期刊文献+
共找到5,034篇文章
< 1 2 250 >
每页显示 20 50 100
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network
1
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model Convolution neural network(cnn) Probability of failure(POF)
在线阅读 下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:1
2
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model convolutional neural network(cnn) Finite Element Method(FEM)
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
3
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(cnns) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Noninvasive Hemoglobin Estimation with Adaptive Lightweight Convolutional Neural Network Using Wearable PPG
4
作者 Florentin Smarandache Saleh I.Alzahrani +2 位作者 Sulaiman Al Amro Ijaz Ahmad Mubashir Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3715-3735,共21页
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn... Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques. 展开更多
关键词 Hemoglobin estimation photoplethysmography(PPG) convolutional neural network(cnn) noninvasive method wearable healthcare
在线阅读 下载PDF
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
5
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants convolutional neural networks Data augmentation Optimization algorithms model evaluation methods Deep Learning
原文传递
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
6
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (cnn) Seismic Fault Identification U-Net 3D model Geological Exploration
在线阅读 下载PDF
Fault diagnosis of a marine power-generation diesel engine based on the Gramian angular field and a convolutional neural network 被引量:5
7
作者 Congyue LI Yihuai HU +1 位作者 Jiawei JIANG Dexin CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第6期470-482,共13页
Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective featu... Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability. 展开更多
关键词 Multi-attention mechanisms(MAM) convolutional neural network(cnn) Gramian angular field(GAF) Image fusion Marine power-generation diesel engine Fault diagnosis
原文传递
A Generative Model-Based Network Framework for Ecological Data Reconstruction
8
作者 Shuqiao Liu Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2025年第1期929-948,共20页
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Th... This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development. 展开更多
关键词 convolutional neural network(cnn) VAE GAN TOPSIS data reconstruction
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction 被引量:2
9
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
原文传递
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:2
10
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity convolutional neural network(cnn) Anisotropic shear strength Nonlinear stressestrain behavior
在线阅读 下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks 被引量:1
11
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) convolutional neural networks(cnns) Evaluation of error
在线阅读 下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
12
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
在线阅读 下载PDF
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
13
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 Bayesian neural networks(BNNs) convolution neural networks(cnn) Bayesian convolution neural networks(Bcnns) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
CNN-based multi-output regression model to estimate infrastructural surface crack dimensions adopting a generalised patch size and FWHM-based width quantification
14
作者 Sudipta Debroy Arjun Sil 《Digital Twins and Applications》 2025年第1期75-102,共28页
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o... To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data. 展开更多
关键词 ablation cnn convolution neural network CRACK crack patch estimation FWHM length multi-output regression segmentation uncertainty WIDTH
在线阅读 下载PDF
Predicting outcomes using neural networks in the intensive care unit
15
作者 Gumpeny R Sridhar Venkat Yarabati Lakshmi Gumpeny 《World Journal of Clinical Cases》 2025年第11期1-11,共11页
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da... Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality. 展开更多
关键词 Large language models HALLUCINATIONS Supervised learning Unsupervised learning Convoluted neural networks BLACK-BOX WORKFLOW
暂未订购
Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-attention models in Yutian Oasis,southern Xinjiang,China
16
作者 Xiaobo LÜ Ilyas NURMEMET +4 位作者 Sentian XIAO Jing ZHAO Xinru YU Yilizhati AILI Shiqin LI 《Pedosphere》 2025年第5期846-857,共12页
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables... Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone. 展开更多
关键词 arid region convolutional neural network deep learning method hybrid prediction model leaf area index long short-term memory neural network normalized difference vegetation index physical model surface soil moisture
原文传递
Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models
17
作者 Zishuai Wang Wangchang Li Zhonglin Tang 《Journal of Integrative Agriculture》 2025年第9期3574-3582,共9页
Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction ac... Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction accuracy still presents signifcant challenges.In this study,we applied CNNs to predict swine traits using previously published data.Specifcally,we extensively evaluated the CNN model's performance by employing various sets of single nucleotide polymorphisms(SNPs)and concluded that the CNN model achieved optimal performance when utilizing SNP sets comprising 1,000 SNPs.Furthermore,we adopted a novel approach using the one-hot encoding method that transforms the 16 different genotypes into sets of eight binary variables.This innovative encoding method signifcantly enhanced the CNN's prediction accuracy for swine traits,outperforming the traditional one-hot encoding techniques.Our fndings suggest that the expanded one-hot encoding method can improve the accuracy of DL methods in the genomic prediction of swine agricultural economic traits.This discovery has significant implications for swine breeding programs,where genomic prediction is pivotal in improving breeding strategies.Furthermore,future research endeavors can explore additional enhancements to DL methods by incorporating advanced data pre-processing techniques. 展开更多
关键词 SWINE agricultural economic traits genomic prediction deep learning one-hot encoding convolutional neural networks(cnns)
在线阅读 下载PDF
SFPBL:Soft Filter Pruning Based on Logistic Growth Differential Equation for Neural Network
18
作者 Can Hu Shanqing Zhang +2 位作者 Kewei Tao Gaoming Yang Li Li 《Computers, Materials & Continua》 2025年第3期4913-4930,共18页
The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and int... The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and intricate networks pose challenges for deployment and execution while also exacerbating the issue of network over-parameterization.To address this issue,various network compression techniques have been developed,such as network pruning.A typical pruning algorithm follows a three-step pipeline involving training,pruning,and retraining.Existing methods often directly set the pruned filters to zero during retraining,significantly reducing the parameter space.However,this direct pruning strategy frequently results in irreversible information loss.In the early stages of training,a network still contains much uncertainty,and evaluating filter importance may not be sufficiently rigorous.To manage the pruning process effectively,this paper proposes a flexible neural network pruning algorithm based on the logistic growth differential equation,considering the characteristics of network training.Unlike other pruning algorithms that directly reduce filter weights,this algorithm introduces a three-stage adaptive weight decay strategy inspired by the logistic growth differential equation.It employs a gentle decay rate in the initial training stage,a rapid decay rate during the intermediate stage,and a slower decay rate in the network convergence stage.Additionally,the decay rate is adjusted adaptively based on the filter weights at each stage.By controlling the adaptive decay rate at each stage,the pruning of neural network filters can be effectively managed.In experiments conducted on the CIFAR-10 and ILSVRC-2012 datasets,the pruning of neural networks significantly reduces the floating-point operations while maintaining the same pruning rate.Specifically,when implementing a 30%pruning rate on the ResNet-110 network,the pruned neural network not only decreases floating-point operations by 40.8%but also enhances the classification accuracy by 0.49%compared to the original network. 展开更多
关键词 Filter pruning channel pruning cnn complexity deep neural networks filtering theory logistic model
在线阅读 下载PDF
Attention⁃Based Multi⁃scale CNN and LSTM Model for Remaining Useful Life Estimation
19
作者 DUAN Jiajun LU Zhong DU Zhiqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期64-77,共14页
Current aero-engine life prediction areas typically focus on single-scale degradation features,and the existing methods are not comprehensive enough to capture the relationship within time series data.To address this ... Current aero-engine life prediction areas typically focus on single-scale degradation features,and the existing methods are not comprehensive enough to capture the relationship within time series data.To address this problem,we propose a novel remaining useful life(RUL)estimation method based on the attention mechanism.Our approach designs a two-layer multi-scale feature extraction module that integrates degradation features at different scales.These features are then processed in parallel by a self-attention module and a three-layer long short-term memory(LSTM)network,which together capture long-term dependencies and adaptively weigh important feature.The integration of degradation patterns from both components into the attention module enhances the model’s ability to capture long-term dependencies.Visualizing the attention module’s weight matrices further improves model interpretability.Experimental results on the C-MAPSS dataset demonstrate that our approach outperforms the existing state-of-the-art methods. 展开更多
关键词 attention mechanism convolutional neural network(cnn) long short-term memory(LSTM) multi-scale feature extraction
在线阅读 下载PDF
Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model
20
作者 Umit Cigdem Turhal Yasemin Onal Kutalmis Turhal 《Computer Modeling in Engineering & Sciences》 2025年第5期2307-2332,共26页
The reliability and efficiency of photovoltaic(PV)systems are essential for sustainable energy produc-tion,requiring accurate fault detection to minimize energy losses.This study proposes a hybrid model integrating Ne... The reliability and efficiency of photovoltaic(PV)systems are essential for sustainable energy produc-tion,requiring accurate fault detection to minimize energy losses.This study proposes a hybrid model integrating Neighborhood Components Analysis(NCA)with a Convolutional Neural Network(CNN)to improve fault detection and diagnosis.Unlike Principal Component Analysis(PCA),which may compromise class relationships during feature extraction,NCA preserves these relationships,enhancing classification performance.The hybrid model combines NCA with CNN,a fundamental deep learning architecture,to enhance fault detection and diagnosis capabilities.The performance of the proposed NCA-CNN model was evaluated against other models.The experimental evaluation demonstrates that the NCA-CNN model outperforms existing methods,achieving 100%fault detection accuracy and 99%fault diagnosis accuracy.These findings underscore the model’s potential in improving PV system reliability and efficiency. 展开更多
关键词 Artificial intelligence photovoltaic energy systems machine learning photovoltaic fault detection and diagnosis convolutional neural networks(cnn) neighbourhood component analysis(NCA)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部