Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn...Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.展开更多
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t...Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.展开更多
System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On...System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.展开更多
To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hard...To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hardware,limiting their generalizability.This paper proposes an approach called resource-adaptive tensor decomposition(RATD)for CNN operators,which aims to achieve an optimal match between computational resources and parallel computing tasks.Firstly,CNN is represented with fine-grained tensors at the lower graph level,thereby decoupling tensors that can be computed in parallel within operators.Secondly,the convolution and pooling operators are fused,and the decoupled tensor blocks are scheduled in parallel.Finally,a cost model is constructed,based on runtime and resource utilization,to iteratively refine the process of tensor block decomposition and automatically determine the optimal tensor decomposition.Experimental results demonstrate that the proposed RATD improves the accuracy of the model by 11%.Compared with CUDA(compute unified device architecture)deep neural network library(cuDNN),RATD achieves an average speedup ratio of 1.21 times in inference time across various convolution kernels,along with a 12%increase in computational resource utilization.展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc...Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM.展开更多
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical...As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The prop...In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.展开更多
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a...With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.展开更多
A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the pro...A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency.展开更多
Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is...Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method.展开更多
Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition,and have...Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition,and have achieved impressive results.However,the research on deep learningbased palmprint recognition and palm vein recognition is still very preliminary.In this paper,in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition indepth,we conduct performance evaluation of seventeen representative and classic convolutional neural networks(CNNs)on one 3D palmprint database,five 2D palmprint databases and two palm vein databases.A lot of experiments have been carried out in the conditions of different network structures,different learning rates,and different numbers of network layers.We have also conducted experiments on both separate data mode and mixed data mode.Experimental results show that these classic CNNs can achieve promising recognition results,and the recognition performance of recently proposed CNNs is better.Particularly,among classic CNNs,one of the recently proposed classic CNNs,i.e.,EfficientNet achieves the best recognition accuracy.However,the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recogniti...How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recognition accuracy,a network protocol recognition method based on Convolutional Neural Network(CNN)is proposed.The method utilizes deep learning technique,and it processes network flows automatically.Firstly,normalization is performed on the intercepted network flows and they are mapped into two-dimensional matrix which will be used as the input of CNN.Then,an improved classification model named Ptr CNN is built,which can automatically extract the appropriate features of network protocols.Finally,the classification model is trained to recognize the network protocols.The proposed approach is compared with several machine learning methods.Experimental results show that the tailored CNN can not only improve protocol recognition accuracy but also ensure the fast convergence of classification model and reduce the classification time.展开更多
In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,p...In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,pooling layers,a full connection layer and an output layer.The method acquires high-level abstractions for SAR data by using a hierarchical architecture composed of multiple non-linear transformations such as convolutions and poolings.The feature maps produced by convolutional layers are subsampled by pooling layers and then are converted into a feature vector by the full connection layer.The feature vector is then used by the output layer with softmax regression to perform land cover classification.The multi-layer method replaces hand-engineered features with backpropagation(BP)neural network algorithm for supervised feature learning,hierarchical feature extraction and land cover classification of SAR images.RADARSAT-2 ultra-fine beam high resolution HH-SAR images acquired in the rural urban fringe of the Greater Toronto Area(GTA)are selected for this study.The experiment results show that the accuracy of our classification method is about90%which is higher than that of nearest neighbor(NN).展开更多
Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,the pote...Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,the potential precursors to lung cancer, is paramount. In this paper, a computer-aided lung nodule detection system using 3D deep convolutional neural networks(CNNs) is developed. The first multi-scale 11-layer 3D fully convolutional neural network(FCN) is used for screening all lung nodule candidates. Considering relative small sizes of lung nodules and limited memory, the input of the FCN consists of 3D image patches rather than of whole images. The candidates are further classified in the second CNN to get the final result. The proposed method achieves high performance in the LUNA16 challenge and demonstrates the effectiveness of using 3D deep CNNs for lung nodule detection.展开更多
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2022JM-396)the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23040101+4 种基金Shaanxi Province Key Research and Development Projects(Program No.2023-YBSF-437)Xi'an Shiyou University Graduate Student Innovation Fund Program(Program No.YCX2412041)State Key Laboratory of Air Traffic Management System and Technology(SKLATM202001)Tianjin Education Commission Research Program Project(2020KJ028)Fundamental Research Funds for the Central Universities(3122019132)。
文摘Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.
基金Supported by the National Science and Technology Major Project of China(No.2022ZD0119003)the National Natural Science Foundation of China(No.61834005).
文摘To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hardware,limiting their generalizability.This paper proposes an approach called resource-adaptive tensor decomposition(RATD)for CNN operators,which aims to achieve an optimal match between computational resources and parallel computing tasks.Firstly,CNN is represented with fine-grained tensors at the lower graph level,thereby decoupling tensors that can be computed in parallel within operators.Secondly,the convolution and pooling operators are fused,and the decoupled tensor blocks are scheduled in parallel.Finally,a cost model is constructed,based on runtime and resource utilization,to iteratively refine the process of tensor block decomposition and automatically determine the optimal tensor decomposition.Experimental results demonstrate that the proposed RATD improves the accuracy of the model by 11%.Compared with CUDA(compute unified device architecture)deep neural network library(cuDNN),RATD achieves an average speedup ratio of 1.21 times in inference time across various convolution kernels,along with a 12%increase in computational resource utilization.
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
基金Anhui Province College Natural Science Fund Key Project of China(KJ2020ZD77)the Project of Education Department of Anhui Province(KJ2020A0379)。
文摘Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM.
基金Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金National Natural Science Foundation of China(No.61902060)Natural Science Foundation of Shanghai,China(No.19ZR1453800)Fundamental Research Funds for the Central Universities,China(No.2232021D-33)。
文摘In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.
文摘With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.
基金The National Natural Science Foundation of China(No.6504000089)
文摘A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency.
文摘Nowadays,the amount of wed data is increasing at a rapid speed,which presents a serious challenge to the web monitoring.Text sentiment analysis,an important research topic in the area of natural language processing,is a crucial task in the web monitoring area.The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data.Deep learning is a hot research topic of the artificial intelligence in the recent years.By now,several research groups have studied the sentiment analysis of English texts using deep learning methods.In contrary,relatively few works have so far considered the Chinese text sentiment analysis toward this direction.In this paper,a method for analyzing the Chinese text sentiment is proposed based on the convolutional neural network(CNN)in deep learning in order to improve the analysis accuracy.The feature values of the CNN after the training process are nonuniformly distributed.In order to overcome this problem,a method for normalizing the feature values is proposed.Moreover,the dimensions of the text features are optimized through simulations.Finally,a method for updating the learning rate in the training process of the CNN is presented in order to achieve better performances.Experiment results on the typical datasets indicate that the accuracy of the proposed method can be improved compared with that of the traditional supervised machine learning methods,e.g.,the support vector machine method.
基金National Science Foundation of China(Nos.61673157,62076086,61972129 and 61702154)Key Research and Development Program in Anhui Province(Nos.202004d07020008 and 201904d07020010).
文摘Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition,and have achieved impressive results.However,the research on deep learningbased palmprint recognition and palm vein recognition is still very preliminary.In this paper,in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition indepth,we conduct performance evaluation of seventeen representative and classic convolutional neural networks(CNNs)on one 3D palmprint database,five 2D palmprint databases and two palm vein databases.A lot of experiments have been carried out in the conditions of different network structures,different learning rates,and different numbers of network layers.We have also conducted experiments on both separate data mode and mixed data mode.Experimental results show that these classic CNNs can achieve promising recognition results,and the recognition performance of recently proposed CNNs is better.Particularly,among classic CNNs,one of the recently proposed classic CNNs,i.e.,EfficientNet achieves the best recognition accuracy.However,the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported by the National Key R&D Program of China(2017YFB0802900).
文摘How to correctly acquire the appropriate features is a primary problem in network protocol recognition field.Aiming to avoid the trouble of artificially extracting features in traditional methods and improve recognition accuracy,a network protocol recognition method based on Convolutional Neural Network(CNN)is proposed.The method utilizes deep learning technique,and it processes network flows automatically.Firstly,normalization is performed on the intercepted network flows and they are mapped into two-dimensional matrix which will be used as the input of CNN.Then,an improved classification model named Ptr CNN is built,which can automatically extract the appropriate features of network protocols.Finally,the classification model is trained to recognize the network protocols.The proposed approach is compared with several machine learning methods.Experimental results show that the tailored CNN can not only improve protocol recognition accuracy but also ensure the fast convergence of classification model and reduce the classification time.
基金Supported by the National Natural Science Foundation of China(61303214)the Natural Science Foundation of Hubei Province(2014CFB718,2015CFB256)
文摘In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,pooling layers,a full connection layer and an output layer.The method acquires high-level abstractions for SAR data by using a hierarchical architecture composed of multiple non-linear transformations such as convolutions and poolings.The feature maps produced by convolutional layers are subsampled by pooling layers and then are converted into a feature vector by the full connection layer.The feature vector is then used by the output layer with softmax regression to perform land cover classification.The multi-layer method replaces hand-engineered features with backpropagation(BP)neural network algorithm for supervised feature learning,hierarchical feature extraction and land cover classification of SAR images.RADARSAT-2 ultra-fine beam high resolution HH-SAR images acquired in the rural urban fringe of the Greater Toronto Area(GTA)are selected for this study.The experiment results show that the accuracy of our classification method is about90%which is higher than that of nearest neighbor(NN).
基金the National Natural Science Foundation of China(No.81371624)the National Key Research and Development Program of China(No.2016YFC0104608)+1 种基金the National Basic Research Program of China(No.2010CB834302)the Shanghai Jiao Tong University Medical Engineering Cross Research Funds(Nos.YG2013MS30 and YG2014ZD05)
文摘Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,the potential precursors to lung cancer, is paramount. In this paper, a computer-aided lung nodule detection system using 3D deep convolutional neural networks(CNNs) is developed. The first multi-scale 11-layer 3D fully convolutional neural network(FCN) is used for screening all lung nodule candidates. Considering relative small sizes of lung nodules and limited memory, the input of the FCN consists of 3D image patches rather than of whole images. The candidates are further classified in the second CNN to get the final result. The proposed method achieves high performance in the LUNA16 challenge and demonstrates the effectiveness of using 3D deep CNNs for lung nodule detection.