Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn...Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.展开更多
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t...Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.展开更多
To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hard...To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hardware,limiting their generalizability.This paper proposes an approach called resource-adaptive tensor decomposition(RATD)for CNN operators,which aims to achieve an optimal match between computational resources and parallel computing tasks.Firstly,CNN is represented with fine-grained tensors at the lower graph level,thereby decoupling tensors that can be computed in parallel within operators.Secondly,the convolution and pooling operators are fused,and the decoupled tensor blocks are scheduled in parallel.Finally,a cost model is constructed,based on runtime and resource utilization,to iteratively refine the process of tensor block decomposition and automatically determine the optimal tensor decomposition.Experimental results demonstrate that the proposed RATD improves the accuracy of the model by 11%.Compared with CUDA(compute unified device architecture)deep neural network library(cuDNN),RATD achieves an average speedup ratio of 1.21 times in inference time across various convolution kernels,along with a 12%increase in computational resource utilization.展开更多
System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On...System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc...Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM.展开更多
As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical...As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The prop...In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.展开更多
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a...With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.展开更多
A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the pro...A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency.展开更多
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi...The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.展开更多
Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing...Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing tools.The manual forgery localization is often reliant on forensic expertise.In recent times,machine learning(ML)and deep learning(DL)have shown promising results in automating image forgery localization.However,the ML-based method relies on hand-crafted features.Conversely,the DL method automatically extracts shallow spatial features to enhance the accuracy.However,DL-based methods lack the global co-relation of the features due to this performance degradation noticed in several applications.In the proposed study,we designed FLTNet(forgery localization transformer network)with a CNN(convolution neural network)encoder and transformer-based attention.The encoder extracts local high-dimensional features,and the transformer provides the global co-relation of the features.In the decoder,we have exclusively utilized a CNN to upsample the features that generate tampered mask images.Moreover,we evaluated visual and quantitative performance on three standard datasets and comparison with six state-of-the-art methods.The IoU values of the proposed method on CASIA V1,CASIA V2,and CoMoFoD datasets are 0.77,0.82,and 0.84,respectively.In addition,the F1-scores of these three datasets are 0.80,0.84,and 0.86,respectively.Furthermore,the visual results of the proposed method are clean and contain rich information,which can be used for real-time forgery detection.The code used in the study can be accessed through URL:https://github.com/ajit2k5/Forgery-Localization(accessed on 21 January 2025).展开更多
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2022JM-396)the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23040101+4 种基金Shaanxi Province Key Research and Development Projects(Program No.2023-YBSF-437)Xi'an Shiyou University Graduate Student Innovation Fund Program(Program No.YCX2412041)State Key Laboratory of Air Traffic Management System and Technology(SKLATM202001)Tianjin Education Commission Research Program Project(2020KJ028)Fundamental Research Funds for the Central Universities(3122019132)。
文摘Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control.
基金Supported by the National Science and Technology Major Project of China(No.2022ZD0119003)the National Natural Science Foundation of China(No.61834005).
文摘To enhance the inference efficiency of convolutional neural network(CNN),tensor parallelism is employed to improve the parallelism within operators.However,existing methods are customized to specific networks and hardware,limiting their generalizability.This paper proposes an approach called resource-adaptive tensor decomposition(RATD)for CNN operators,which aims to achieve an optimal match between computational resources and parallel computing tasks.Firstly,CNN is represented with fine-grained tensors at the lower graph level,thereby decoupling tensors that can be computed in parallel within operators.Secondly,the convolution and pooling operators are fused,and the decoupled tensor blocks are scheduled in parallel.Finally,a cost model is constructed,based on runtime and resource utilization,to iteratively refine the process of tensor block decomposition and automatically determine the optimal tensor decomposition.Experimental results demonstrate that the proposed RATD improves the accuracy of the model by 11%.Compared with CUDA(compute unified device architecture)deep neural network library(cuDNN),RATD achieves an average speedup ratio of 1.21 times in inference time across various convolution kernels,along with a 12%increase in computational resource utilization.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework.
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
基金Anhui Province College Natural Science Fund Key Project of China(KJ2020ZD77)the Project of Education Department of Anhui Province(KJ2020A0379)。
文摘Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM.
基金Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘As a common and high-risk type of disease,heart disease seriously threatens people’s health.At the same time,in the era of the Internet of Thing(IoT),smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases.Therefore,the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases.In this paper,we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network(CNN)and Encoder-Decoder model.The model uses Long Short-Term Memory(LSTM)to consider the influence of time series features on classification results.Simultaneously,it is trained and tested by the MIT-BIH arrhythmia database.Besides,Generative Adversarial Networks(GAN)is adopted as a method of data equalization for solving data imbalance problem.The simulation results show that for the inter-patient arrhythmia classification,the hybrid model combining CNN and Encoder-Decoder model has the best classification accuracy,of which the accuracy can reach 94.05%.Especially,it has a better advantage for the classification effect of supraventricular ectopic beats(class S)and fusion beats(class F).
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金National Natural Science Foundation of China(No.61902060)Natural Science Foundation of Shanghai,China(No.19ZR1453800)Fundamental Research Funds for the Central Universities,China(No.2232021D-33)。
文摘In order to improve the spatial resolution of hyperspectral(HS)image and minimize the spectral distortion,an HS and multispectral(MS)image fusion approach based on convolutional neural network(CNN)is proposed.The proposed approach incorporates the linear spectral mixture model and spatial-spectral spread transform model into the learning phase of network,aiming to fully exploit the spatial-spectral information of HS and MS images,and improve the spectral fidelity of fusion images.Experiments on two real remote sensing data under different resolutions demonstrate that compared with some state-of-the-art HS and MS image fusion methods,the proposed approach achieves superior spectral fidelities and lower fusion errors.
文摘With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper.
基金The National Natural Science Foundation of China(No.6504000089)
文摘A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency.
基金Saudi Arabia for funding this work through Small Research Group Project under Grant Number RGP.1/316/45.
文摘The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.
文摘Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing tools.The manual forgery localization is often reliant on forensic expertise.In recent times,machine learning(ML)and deep learning(DL)have shown promising results in automating image forgery localization.However,the ML-based method relies on hand-crafted features.Conversely,the DL method automatically extracts shallow spatial features to enhance the accuracy.However,DL-based methods lack the global co-relation of the features due to this performance degradation noticed in several applications.In the proposed study,we designed FLTNet(forgery localization transformer network)with a CNN(convolution neural network)encoder and transformer-based attention.The encoder extracts local high-dimensional features,and the transformer provides the global co-relation of the features.In the decoder,we have exclusively utilized a CNN to upsample the features that generate tampered mask images.Moreover,we evaluated visual and quantitative performance on three standard datasets and comparison with six state-of-the-art methods.The IoU values of the proposed method on CASIA V1,CASIA V2,and CoMoFoD datasets are 0.77,0.82,and 0.84,respectively.In addition,the F1-scores of these three datasets are 0.80,0.84,and 0.86,respectively.Furthermore,the visual results of the proposed method are clean and contain rich information,which can be used for real-time forgery detection.The code used in the study can be accessed through URL:https://github.com/ajit2k5/Forgery-Localization(accessed on 21 January 2025).