Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challengin...Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challenging task because of enormous computational resource requirements and long computational time.To achieve full chip ILT solution,attempts have been made by using machine learning techniques based on deep convolution neural network(DCNN).The reported input for such DCNN is the rasterized images of the lithography target;such pure geometrical input requires DCNN to possess considerable number of layers to learn the optical properties of the mask,the nonlinear imaging process,and the rigorous ILT algorithm as well.To alleviate the difficulties,we have proposed the physics based optimal feature vector design for machine learning ILT in our early report.Although physics based feature vector followed by feedforward neural network can provide the solution to machine learning ILT,the feature vector is long and it can consume considerable amount of memory resource in practical implementation.To improve the resource efficiency,we proposed a hybrid approach in this study by combining first few physics based feature maps with a specially designed DCNN structure to learn the rigorous ILT algorithm.Our results show that this approach can make machine learning ILT easy,fast and more accurate.展开更多
Recently, image representations derived by convolutional neural networks(CNN) have achieved promising performance for instance retrieval, and they outperformthe traditional hand-crafted image features. However, most o...Recently, image representations derived by convolutional neural networks(CNN) have achieved promising performance for instance retrieval, and they outperformthe traditional hand-crafted image features. However, most of existing CNN-based featuresare proposed to describe the entire images, and thus they are less robust to backgroundclutter. This paper proposes a region of interest (RoI)-based deep convolutionalrepresentation for instance retrieval. It first detects the region of interests (RoIs) from animage, and then extracts a set of RoI-based CNN features from the fully-connected layerof CNN. The proposed RoI-based CNN feature describes the patterns of the detected RoIs,so that the visual matching can be implemented at image region-level to effectively identifytarget objects from cluttered backgrounds. Moreover, we test the performance of theproposed RoI-based CNN feature, when it is extracted from different convolutional layersor fully-connected layers. Also, we compare the performance of RoI-based CNN featurewith those of the state-of-the-art CNN features on two instance retrieval benchmarks.Experimental results show that the proposed RoI-based CNN feature provides superiorperformance than the state-of-the-art CNN features for in-stance retrieval.展开更多
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network...With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.展开更多
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica...As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.展开更多
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize...There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.展开更多
为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对...为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对小目标的特征进行二次提取。利用SimAM模块对特征图空间域的重要性进行划分并与通道域权重相结合,进一步提升模型性能。在Pascal VOC 2007测试集上测试融合模块的有效性。结果表明:轻量化后,单个DSConv结构参数量下降85.6%。模型平均精度(mean average precision,mAP)比基线模型增加了4.41%,比添加现有特征融合方法模型平均增加3.78%。所提出模块的参数量、计算量、检测速度与现阶段其它方法相比均具有一定优势。展开更多
文摘Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challenging task because of enormous computational resource requirements and long computational time.To achieve full chip ILT solution,attempts have been made by using machine learning techniques based on deep convolution neural network(DCNN).The reported input for such DCNN is the rasterized images of the lithography target;such pure geometrical input requires DCNN to possess considerable number of layers to learn the optical properties of the mask,the nonlinear imaging process,and the rigorous ILT algorithm as well.To alleviate the difficulties,we have proposed the physics based optimal feature vector design for machine learning ILT in our early report.Although physics based feature vector followed by feedforward neural network can provide the solution to machine learning ILT,the feature vector is long and it can consume considerable amount of memory resource in practical implementation.To improve the resource efficiency,we proposed a hybrid approach in this study by combining first few physics based feature maps with a specially designed DCNN structure to learn the rigorous ILT algorithm.Our results show that this approach can make machine learning ILT easy,fast and more accurate.
基金supported by the National Natural Science Foundation ofChina under Grant 61602253, U1836208, U1536206, U1836110, 61672294, in part by theNational Key R&D Program of China under Grant 2018YFB1003205, in part by the PriorityAcademic Program Development of Jiangsu Higher Education Institutions (PAPD) fund, inpart by the Collaborative Innovation Center of Atmospheric Environment and EquipmentTechnology (CICAEET) fund, China, and in part by MOST under contracts 108-2634-F-259-001- through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan.
文摘Recently, image representations derived by convolutional neural networks(CNN) have achieved promising performance for instance retrieval, and they outperformthe traditional hand-crafted image features. However, most of existing CNN-based featuresare proposed to describe the entire images, and thus they are less robust to backgroundclutter. This paper proposes a region of interest (RoI)-based deep convolutionalrepresentation for instance retrieval. It first detects the region of interests (RoIs) from animage, and then extracts a set of RoI-based CNN features from the fully-connected layerof CNN. The proposed RoI-based CNN feature describes the patterns of the detected RoIs,so that the visual matching can be implemented at image region-level to effectively identifytarget objects from cluttered backgrounds. Moreover, we test the performance of theproposed RoI-based CNN feature, when it is extracted from different convolutional layersor fully-connected layers. Also, we compare the performance of RoI-based CNN featurewith those of the state-of-the-art CNN features on two instance retrieval benchmarks.Experimental results show that the proposed RoI-based CNN feature provides superiorperformance than the state-of-the-art CNN features for in-stance retrieval.
基金funded by the Fundamental Research Project of CNPC Geophysical Key Lab(2022DQ0604-4)the Strategic Cooperation Technology Projects of China National Petroleum Corporation and China University of Petroleum-Beijing(ZLZX 202003)。
文摘With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.
基金This paper was supported by the 2018 Science and Technology Breakthrough Project of Henan Provincial Science and Technology Department(No.182102310694).
文摘As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.
基金supported by the Shanghai Sailing Program,China (No.20YF1447600)the Research Start-Up Project of Shanghai Institute of Technology (No.YJ2021-60)+1 种基金the Collaborative Innovation Project of Shanghai Institute of Technology (No.XTCX2020-12)the Science and Technology Talent Development Fund for Young and Middle-Aged Teachers at Shanghai Institute of Technology (No.ZQ2022-6)。
文摘There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.
文摘为解决在目标检测网络中使用特征融合方法带来的参数量大、计算复杂度高的问题,提出了一种融合无参注意力机制(SimAM)的特征融合方法。对动态蛇形卷积(DSConv)进行轻量化处理(Light-DSConv)。利用该结构自主学习目标几何形状的能力,对小目标的特征进行二次提取。利用SimAM模块对特征图空间域的重要性进行划分并与通道域权重相结合,进一步提升模型性能。在Pascal VOC 2007测试集上测试融合模块的有效性。结果表明:轻量化后,单个DSConv结构参数量下降85.6%。模型平均精度(mean average precision,mAP)比基线模型增加了4.41%,比添加现有特征融合方法模型平均增加3.78%。所提出模块的参数量、计算量、检测速度与现阶段其它方法相比均具有一定优势。