By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility...The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.展开更多
An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is est...An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.展开更多
In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techn...In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.展开更多
In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theo...In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.展开更多
In this paper we investigate several solution algorithms for the convex fea- sibility problem(CFP)and the best approximation problem(BAP)respectively.The algorithms analyzed are already known before,but by adequately ...In this paper we investigate several solution algorithms for the convex fea- sibility problem(CFP)and the best approximation problem(BAP)respectively.The algorithms analyzed are already known before,but by adequately reformulating the CFP or the BAP we naturally deduce the general projection method for the CFP from well-known steepest decent method for unconstrained optimization and we also give a natural strategy of updating weight parameters.In the linear case we show the connec- tion of the two projection algorithms for the CFP and the BAP respectively.In addition, we establish the convergence of a method for the BAP under milder assumptions in the linear case.We also show by examples a Bauschke's conjecture is only partially correct.展开更多
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con...The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize ...By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.展开更多
In this paper, we develop a Fourier analytic approach to study the problem in the Brunn-Minkowski-Firey theory of convex bodies. We formulate and solve a quasi-Shephard's problem on projections of convex bodies.
An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,...An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,π/2) such that Re {eiδ(1-z)2f′(z)} 〉 0, z ∈ D. For the class C(k) of all close-to-convex functions with respect to k, related to the class of functions convex in the positive direction of the imaginary axis, the Fekete-Szego problem is studied.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are n...In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.展开更多
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Natural Science Foundation of China (11171221)Shanghai Municipal Committee of Science and Technology (10550500800)+1 种基金Basic and Frontier Research Program of Science and Technology Department of Henan Province (112300410277,082300440150)China Coal Industry Association Scientific and Technical Guidance to Project (MTKJ-2011-403)
文摘The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.
基金supported by the National Natural Science Foundation of China (10671126)Shanghai Leading Academic Discipline Project(S30501)
文摘An ε-subgradient projection algorithm for solving a convex feasibility problem is presented.Based on the iterative projection methods and the notion of ε-subgradient,a series of special projection hyperplanes is established.Moreover,compared with the existing projection hyperplanes methods with subgradient,the proposed hyperplanes are interactive with ε,and their ranges are more larger.The convergence of the proposed algorithm is given under some mild conditions,and the validity of the algorithm is proved by the numerical test.
基金Supported by the NNSF of china(11171221)SuppoSed by the Shanghai Municipal Committee of Science and Technology(10550500800)
文摘In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.
基金supported by the Key Program of Scientific Research Fund for Young Teachers of AUST(QN2018109)the National Natural Science Foundation of China(11801008)+1 种基金supported by the Fundamental Research Funds for the Central Universities(2017B715X14)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX17_0508)
文摘In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.
基金supported by the National Natural Science Foundation of China,Grant 10571134
文摘In this paper we investigate several solution algorithms for the convex fea- sibility problem(CFP)and the best approximation problem(BAP)respectively.The algorithms analyzed are already known before,but by adequately reformulating the CFP or the BAP we naturally deduce the general projection method for the CFP from well-known steepest decent method for unconstrained optimization and we also give a natural strategy of updating weight parameters.In the linear case we show the connec- tion of the two projection algorithms for the CFP and the BAP respectively.In addition, we establish the convergence of a method for the BAP under milder assumptions in the linear case.We also show by examples a Bauschke's conjecture is only partially correct.
文摘The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.
基金Supported by the National Natural Science Foundation of China(11161019,11371224)
文摘In this paper, we develop a Fourier analytic approach to study the problem in the Brunn-Minkowski-Firey theory of convex bodies. We formulate and solve a quasi-Shephard's problem on projections of convex bodies.
文摘An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,π/2) such that Re {eiδ(1-z)2f′(z)} 〉 0, z ∈ D. For the class C(k) of all close-to-convex functions with respect to k, related to the class of functions convex in the positive direction of the imaginary axis, the Fekete-Szego problem is studied.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
文摘In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are nonconvex functions and include the biconvex function, convex functions, and <i>k</i>-convex as special cases. We study some properties of the higher order strongly biconvex functions. Several parallelogram laws for inner product spaces are obtained as novel applications of the higher order strongly biconvex affine functions. It is shown that the minimum of generalized biconvex functions on the <i>k</i>-biconvex sets can be characterized by a class of equilibrium problems, which is called the higher order strongly biequilibrium problems. Using the auxiliary technique involving the Bregman functions, several new inertial type methods for solving the higher order strongly biequilibrium problem are suggested and investigated. Convergence analysis of the proposed methods is considered under suitable conditions. Several important special cases are obtained as novel applications of the derived results. Some open problems are also suggested for future research.