期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction
1
作者 Xuan Liu Qing Li 《Chinese Chemical Letters》 2025年第4期7-8,共2页
The quest for sustainable energy solutions has intensified the search for alternative feedstocks that can supplement or replace fossil fuels. Obtaining fuels or chemicals through the conversion of renewable biomass is... The quest for sustainable energy solutions has intensified the search for alternative feedstocks that can supplement or replace fossil fuels. Obtaining fuels or chemicals through the conversion of renewable biomass is a promising candidate [1,2]. Some noblemetal-based (e.g., Pt, Pd and Rh) catalysts exhibit significant catalytic activity to the conversion reaction of these biomass. 展开更多
关键词 fossil fuels electrocatalytic biomass conversion obtaining fuels alternative feedstocks interatomic active sites sustainable energy solutions conversion renewable biomass conversion reaction
原文传递
Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism 被引量:6
2
作者 Ting-ting FENG Jian YANG +2 位作者 Si-yi DAI Jun-chao WANG Meng-qiang WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期265-276,共12页
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 t... The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity. 展开更多
关键词 ZnMn2O4/Mn3O4 sub-microrods MICROEMULSION conversion reaction mechanism cyclic voltammetry differential capacity analysis
在线阅读 下载PDF
Porous core–shell CoMn_2O_4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS 被引量:2
3
作者 Hang Su Yue-Feng Xu +4 位作者 Shou-Yu Shen Jian-Oiang wang Jun-Tao Li Ling Huang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1637-1643,共7页
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch... Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode. 展开更多
关键词 Lithium ion battery Porous core-shell CoMn2O4 anode conversion reaction mechanism XAFS
在线阅读 下载PDF
Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism
4
作者 Jin-Sung Park Gi Dae Park Yun Chan Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期24-35,共12页
Efforts have been made to develop a promising anode material with a novel composition for sodiumion batteries(SIBs).In this study,the sodium-ion storage mechanism of transition metal selenite that comprises transition... Efforts have been made to develop a promising anode material with a novel composition for sodiumion batteries(SIBs).In this study,the sodium-ion storage mechanism of transition metal selenite that comprises transition metal cation coupled with two anions is studied.Amorphous cobalt selenite(CoSeO_(3))-carbon composite nanofibers containing numerous pores are synthesized via electrospinning process.Upon heat treatment of the electrospun nanofibers containing selenium,CoSe_(2)nanoclusters are formed.During the subsequent oxidation,CoSe_(2)transformed into amorphous CoSeO_(3)and some part of carbon was oxidized into CO_(2),leaving the pores inside the nanofiber.To unveil the electrochemical reaction mechanism,analytical methods including cyclic voltammetry,ex-situ X-ray photoelectron spectroscopy,ex-situ transmission electron microscopy,and in-situ electrochemical impedance spectroscopy techniques were adopted.Based on the analyses,the following conversion reaction from the second cycle onward is suggested:CoO+xSeO_(2)+(1-x)Se+4(x+1)Na^(+)+4(x+1)e~-?Co+(2x+1)Na_(2)O+Na_(2)Se.Furthermore,the electrochemical properties of porous CoSeO_(3)-carbon composite nanofibers are analyzed in detail.The anode material exhibited stable cycle stability up to 200 cycles at 0.5 A g^(-1)and high rate performance up to 5 A g^(-1). 展开更多
关键词 Anode materials Sodium-ion batteries conversion reaction Metal selenite Electrospinning
原文传递
Spin and orbital manipulation of multiple atomic sites by high-entropy effect for catalyzing cascade sulfur conversion
5
作者 Weihao Gong Guangfu Dai +6 位作者 Hongjiao Liu Haobo Sun Zeyi Wu Xinpeng Zhao Haoting Miao Ying Jiang Zhengqing Ye 《Journal of Energy Chemistry》 2025年第10期671-680,共10页
Lithium-sulfur(Li-S)batteries are considered a potential candidate for next-generation energy-dense and sustainable energy storage.However,the slow conversion and severe shuttle of polysulfides(LiPSs)result in rapid p... Lithium-sulfur(Li-S)batteries are considered a potential candidate for next-generation energy-dense and sustainable energy storage.However,the slow conversion and severe shuttle of polysulfides(LiPSs)result in rapid performance degradation over long-term cycling.Herein,we report a high-entropy single-atom(HE-SA)catalyst to regulate the multi-step conversion of LiPS to attain a high-performance Li-S battery.Both the density functional theory calculations and the experimental results prove that the Fe atomic site with high spin configurations strongly interacts with Li_(2)S_(4)through d-p and s-p synergistic orbital hybridization which facilitates the reduction of LiPS.Moreover,S-dominant p-d hybridization between Li_(2)S and a high-spin Mn site weakens the Li-S bond and facilitates the rapid sulfur evolution reaction.Consequently,the Li-S battery with a bifunctional HE-SA catalyst shows an ultralow capacity decay of 0.026% per cycle over 1900 cycles at 1 C.This work proposes a high-entropy strategy for sculpting electronic structures to enable spin and orbital hybridization modulation in advanced catalysts toward longcycling Li-S batteries. 展开更多
关键词 Electronic spin state Orbital hybridization High-entropy effect Multi-atomic catalysts Sulfur conversion reaction Li-S battery
在线阅读 下载PDF
Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion(Li+/Na+/K+)storages 被引量:4
6
作者 Yong Cheng Bingbing Chen +5 位作者 Limin Chang Dongyu Zhang Chunli Wang Shaohua Wang Ping Nie Limin Wang 《Nano Research》 SCIE EI CSCD 2023年第1期1642-1650,共9页
SnO2-based anode materials have attracted much attention due to high capacity and relatively mild voltage platforms.However,limited by low initial Coulombic efficiency(ICE)and poor stability,its practical application ... SnO2-based anode materials have attracted much attention due to high capacity and relatively mild voltage platforms.However,limited by low initial Coulombic efficiency(ICE)and poor stability,its practical application is still challenging.Recently,it has been found that compositing carbon or metal particles with SnO2 is an effective strategy to achieve high alkaline-ion storages.Although this strategy may improve the kinetics and ICE of the electrochemical reaction,the specific mechanism has not been clearly elucidated.In this work,we found that the invalidation SnO2 may go through two steps:1)the conversion process from SnO2 to Sn and Li2O;2)the collapse of the electrode material resulted from huge volume changes during the alloyed Sn with alkaline ions.To address these issues,a unique robust Co-NC shell derived from ZIF-67 is introduced,in which the transited metallic Co nanoparticles could accelerate the decomposition of Sn-O and Li-O bonds,thus expedite the kinetics of conversion reaction.As a result,the SnO2@Co-NC electrode achieves a more complete and efficient transfer between SnO2 and Sn phases,possessing a potential to achieve high alkaline-ion(Li+/Na+/K+)storages. 展开更多
关键词 alkaline-ion storage SNO2 ANODE conversion reaction electron transfer
原文传递
In-situ tracking of phase conversion reaction induced metal/metal oxides for efficient oxygen evolution 被引量:1
7
作者 Shahid Khan Chao Wang +4 位作者 Haoliang Lu Yufeng Cao Zeyang Mao Chenglin Yan Xianfu Wang 《Science China Materials》 SCIE EI CSCD 2021年第2期362-373,共12页
Due to the unique interface and electronic structure,metal/metal oxide composite electrocatalysts have been designed and exploited for electrocatalytic oxygen evolution reaction(OER)in alkaline solution.However,how to... Due to the unique interface and electronic structure,metal/metal oxide composite electrocatalysts have been designed and exploited for electrocatalytic oxygen evolution reaction(OER)in alkaline solution.However,how to fabricate metal/metal oxides with abundant interfaces and well-dispersed metal phases is a challenge,and the synergistic effect between metal and metal oxides on boosting the electrocatalytic activities is still ambiguous.Herein,by controlling the lithium-induced conversion reaction of metal oxides,metal/metal oxide composites with plentiful interfaces and excellent electrical interconnection are fabricated,which can enhance the active sites,and accelerate the mass transfer during the electrocatalytic reaction.As a result,the electrocatalytic oxygen evolution activities of the as-fabricated metal/metal oxide composite catalysts including NiCo/NiCo2O4,NiMn/NiMn2O4 and CoMn/CoMn2O4 are greatly improved.The catalytic mechanism is also explored using the in-situ X-ray and Raman spectroscopic tracking to uncover the real active centers and the synergistic effect between the metal and metal oxides during water oxidation.Density functional theory plus U(DFT+U)calculation confirms the metal in the composite can optimize the catalytic reaction path and reduce the reaction barrier,thus boosting the electrocatalytic kinetics. 展开更多
关键词 in-situ tracking electrochemical conversion reaction metal/metal oxide interfaces electrocatalytic mechanism oxygen evolution
原文传递
Conversion reaction lithium metal batteries
8
作者 Wenbo Lu Zhaopeng Li +1 位作者 Huaifang Shang Lifang Jiao 《Nano Research》 SCIE EI CSCD 2023年第6期8219-8252,共34页
Contemporary social problems,such as energy shortage and environmental pollution,require developing green energy storage technologies in the context of sustainable development.With the application of secondary battery... Contemporary social problems,such as energy shortage and environmental pollution,require developing green energy storage technologies in the context of sustainable development.With the application of secondary battery technology becoming widespread,the development of traditional lithium(Li)-ion batteries,which are based on insertion/deinsertion reactions,has hit a bottleneck;instead,conversion-type lithium metal batteries(LMBs)have attracted considerable attention owing to the high theoretical capacity of Li metal anodes.In this review,Li-S,Li-O_(2),and Li-SOCl_(2)batteries are used as examples to summarize LMBs based on their conversion reactions from the perspectives of cathode material,anode material,electrolyte,separator,and current collector.Key challenges exist regarding the conversion reactions of various batteries.To achieve the optimum performance and improve the application effect,several improvement strategies have been proposed in relation to reasonable designs of next-generation high-performance rechargeable batteries. 展开更多
关键词 lithium(Li)metal batteries conversion reaction lithium-sulfur battery lithium-oxygen battery lithium-SOCl_(2)battery
原文传递
Phase diagram as a lens for unveiling thermodynamics trends in lithium-sulfur batteries
9
作者 Bo-Bo Zou Hong-Jie Peng 《Chinese Chemical Letters》 2025年第7期8-9,共2页
Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulf... Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4]. 展开更多
关键词 generation multiple electrochemical conversion reaction electrochemical conversion THERMODYNAMICS mechanistic investigations phase diagram lithium sulfur batteries spectroscopic techniques
原文传递
Redox mediators for lithium sulfide cathodes in all-solid-state Li-S batteries:Recent advantages and future perspective
10
作者 S.Jayasubramaniyan Seokjin Kim Jaekyung Sung 《Journal of Energy Chemistry》 2025年第4期535-542,共8页
All-solid-state Li-S batteries(ASSLSBs)are more attractive owing to their achievable superior energy density at a reasonable cost and the solid electrolyte(SE)utilization mitigating the widely recognized polysulfide s... All-solid-state Li-S batteries(ASSLSBs)are more attractive owing to their achievable superior energy density at a reasonable cost and the solid electrolyte(SE)utilization mitigating the widely recognized polysulfide shuttle problem.While the volume expansion(~80%)that occurs during the initial transformation of sulfur to lithium sulfide induces mechanical stress,this can be avoided by using Li_(2)S as a cathode,which also permits the anode-free cell design.However,the high oxidation energy barrier of Li_(2)S cathode during the charging step limits its application in commercial devices.Redox mediators have been extensively used to reduce the oxidation energy barrier of Li_(2)S to the sulfur conversation and boost the reversible kinetics of the conversion reaction.In this review,we have summarized the available redox mediators for Li_(2)S cathode in ASSLSBs and its working mechanism.Moreover,we have proposed novel strategies and guidelines for designing effective redox mediators to boost the reversible conversion reaction. 展开更多
关键词 All-solid-state Li-S batteries Li_(2)S cathode Oxidation barrier conversion reaction Redox mediator
在线阅读 下载PDF
Electrochemical Precipitation Energy-Assisted Aqueous Battery with High Voltage and High Electrode Utilization
11
作者 Chang Liu Lvzhang Jiang Yu Liu 《Energy & Environmental Materials》 2025年第3期91-100,共10页
Increasing battery voltage and electrode utilization is of great significance for improving the energy density of aqueous battery.Herein,for the first time,this work introduces an integrated design strategy to regulat... Increasing battery voltage and electrode utilization is of great significance for improving the energy density of aqueous battery.Herein,for the first time,this work introduces an integrated design strategy to regulate electrode potential and improve electrode utilization based on the concept of electrochemical precipitation energy.By coupling precipitation reaction with original electrode reaction,the Gibbs free energy change(ΔrG^(θ))of the precipitation reaction is coupled to battery reaction’sΔrG^(θ),thereby altering battery’s voltage.Besides,the electrode reaction changes to solid-to-solid reaction after coupling with precipitation reaction,which can improve electrode utilization.The potential of Cu is reduced from 0.34 to-0.96 V(the lowest value among all the reported Cu anode)with a Cu utilization of 87.93%(without additional copper in electrolyte)by coupling Cu_(2)S’s precipitation reaction.Furthermore,the potential of I_(2) is increased from 0.54 to 0.65 V(I_(2)/CuI)and 0.73 V(I_(2)/PbI_(2))by coupling precipitation reaction of CuI and PbI_(2) and the shutting effect of I_(3)^(-)is also limited.As proof of concept,a full Cu_(2)S battery(cathode:S/Cu_(2)S,anode:Cu/Cu_(2)S)is designed with average discharge voltage of 1.12 V,which is the highest value among all the Cu-based aqueous batteries.Due to the certain universality of this strategy,this work provides a new path to regulate the electrode reaction potential and improve electrode utilization. 展开更多
关键词 Cu anode with the lowest potential electrochemical precipitation energy full Cu2S battery potential regulation solid-to-solid conversion reaction
在线阅读 下载PDF
Kinetics of celestite conversion to acidic strontium oxalate hydrate in aqueous solution of oxalic acid 被引量:2
12
作者 Mert ZORAGA Cem KAHRUMAN Ibrahim YUSUFOGLU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1332-1345,共14页
Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and ... Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and pseudomorphic conversion to SrC2 O4·H2O occurs. In the second step, SrC2 O4·H2O reacts with H2C2O4 to form H[Sr(C2 O4)1.5(H2O)]. Sr(HC2 O4)(C2 O4)0.5·H2 O crystallizes during cooling of the reaction mixture to room temperature if the solution reaches the saturation concentration of (H[Sr(C2O4)1.5(H2O)]. The aims of this study are the derivation of reaction rate equations and the determination of the kinetic parameters such as pre-exponential factor, apparent activation energy and order of H2C2O4 concentration for each reaction step.Fractional conversions of SrSO4 were calculated using the quantitative amounts of dissolved S and Sr. It was determined that the reaction rate increased at the initial time of reaction by increasing the temperature using solutions with approximately same H2C2O4 concentrations. The reaction extends very slowly after a certain time in solutions with low H2C2O4 concentration and ends by the formation of a protective layer of SrC2O4-H2O around the surfaces of solid particles. Fractional conversion of SrSO4 is increased by increasing concentration of H2C2O4 at constant temperature. Kinetic model equations were derived using shrinking core model for each step. 展开更多
关键词 celestite concentrate pseudomorphic conversion rate equations kinetic parameters conversion reaction
在线阅读 下载PDF
Conversion mechanism of NiCo_(2)Se_(4)nanotube sphere anodes for potassium-ion batteries 被引量:2
13
作者 Mingyue Wang Yang Li +6 位作者 Shanshan Yao Jiang Cui Lianbo Ma Nauman Mubarak Hongming Zhang Shujiang Ding Jang-Kyo Kim 《Energy Materials and Devices》 2023年第1期80-93,79,共15页
Given the abundance of potassium resources,potassium-ion batteries are considered a low-cost alternative to lithium-ion types.However,their electrochemical performance remains rather unsatisfactory because potassium i... Given the abundance of potassium resources,potassium-ion batteries are considered a low-cost alternative to lithium-ion types.However,their electrochemical performance remains rather unsatisfactory because potassium ions have sluggish kinetics and large ionic radius.In this study,NiCo_(2)Se_(4)nanotube spheres are synthesized as efficient potassium storage hosts via a facile two-step hydrothermal process.The rationally designed electrode has various ameliorating morphological and functional features,including the following:(i)A hollow structure allows for relief of the volume expansion while offering an excellent electrochemical reac-tivity to accelerate the conversion kinetics;(ii)a high electrical conductivity for enhanced electron transfer;and(iii)myriad vacancies to supply active sites for electrochemical reactions.As such,the electrode delivers an initial reversible capacity of 458.1 mAh g^(−1)and retains 346.6 mAh g^(−1)after 300 cycles at 0.03 A g^(−1).The electrode sustains a high capacity of 101.4 mAh g^(−1)even at a high current density of 5 A g^(−1)and outperforms the majority of state-of-the-art anodes in terms of both cyclic capacity and rate capability,especially at above 1.0 A g^(−1).This study not only proves bimetallic selenides are promising candidates for potassium storage devices but also offers new insight into the rational design of electrode materials for high-rate potassium-ion batteries. 展开更多
关键词 bimetallic selenide nanotubes potassium-ion storage conversion reaction mechanism density functional theory(DFT)calculations
在线阅读 下载PDF
Ni0.85 Se hexagonal nanosheets as an advanced conversion cathode for Mg secondary batteries
14
作者 Dong Chen Jingwei Shen +4 位作者 Xue Li Shun-an Cao Ting Li Wei Luo Fei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期226-232,I0007,共8页
Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical... Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization. 展开更多
关键词 Mg secondary batteries Electrochemical conversion reaction Ni0.85Se Hexagonal nanosheets Diffusion kinetics
在线阅读 下载PDF
A semiclassical molecular dynamics of the photochromic ring-opening reaction of spiropyran 被引量:2
15
作者 Gao-Hong Zhai Pei Yang +2 位作者 Shao-Mei Wu Yi-Bo Lei Yu-Sheng Dou 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第5期727-731,共5页
The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2.... The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2.The main simulation results show the dominate pathway corresponds to the ringopening process of trans-SP to form the most stable merocyanine(MC) product.These findings provide more important complementarity for interpreting experimental observations. 展开更多
关键词 Semiclassical dynamical simulation Spiropyran Photochromic ring-opening reaction Internal conversion
原文传递
Lithium-ion and solvent co-intercalation enhancing the energy density of fluorinated graphene cathode 被引量:1
16
作者 Hao Wang Jie Jiang +5 位作者 Pengyu Chen Zhenrui Wu Xiaobin Niu Chuying Ouyang Jian Liu Liping Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期208-215,I0006,共9页
Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it ... Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it to achieve its theory.In this study,we design a new electrolyte,namely 1 M LiBF_(4)DMSO:DOL(1:9 vol.),achieving a high energy density in Li/CF_xprimary cells.The DMSO with a small molecular size and high donor number successfully solvates Li^(+)into a defined Li^(+)-solvation structure.Such solvated Li^(+)can intercalate into the large-spacing carbon layers and achieve an improved capacity.Consequently,when discharged to 1.0 V,the CF_(1.12)cathode demonstrates a specific capacity of 1944 m A h g^(-1)with a specific energy density of 3793 W h kg^(-1).This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF_(x) cathode. 展开更多
关键词 Fluorinated carbon conversion reaction High-energy-density primary battery Li^(+)-solvation structure Solvent co-intercalation
在线阅读 下载PDF
High entropy alloy electrocatalysts 被引量:1
17
作者 Guoliang Gao Yangyang Yu +4 位作者 Guang Zhu Bowen Sun Ren He Andreu Cabot Zixu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期335-364,共30页
Compared to traditional pure metals or alloys based on just one principal element,high entropy alloys(HEAs)exhibit notable structural and physical characteristics,drawing significant attention.While significant advanc... Compared to traditional pure metals or alloys based on just one principal element,high entropy alloys(HEAs)exhibit notable structural and physical characteristics,drawing significant attention.While significant advancements have been made in the synthesis and utilization of HEAs,there is a lack of comprehensive understanding and systematic approach towards the rational design of electrocatalysts.This review begins by introducing the fundamental principles and impacts of HEAs,followed by an overview of traditional and emerging synthesis techniques;in particular,we categorize and critically analyze approaches.Subsequently,a detailed examination of the advancements and comparative performance of HEAs in specific electrocatalytic reactions is presented.The paper concludes by outlining the current challenges and opportunities associated with HEAs catalysts,along with offering personal insights on potential future developments. 展开更多
关键词 High entropy alloys ELECTROCATALYSIS Synthesis strategies Energy conversion reactions
在线阅读 下载PDF
Chloride ion battery:A new emerged electrochemical system for next-generation energy storage 被引量:1
18
作者 Shulin Chen Lu Wu +3 位作者 Yu Liu Peng Zhou Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期154-168,I0004,共16页
In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy stora... In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications. 展开更多
关键词 Chloride ion battery Anion shuttling conversion reaction Chloride redox
在线阅读 下载PDF
Regulating the orbital hybridization to induce asymmetrical catalysis for efficient reversible sodium conversion storage
19
作者 Zijia Qi Kai Cui +10 位作者 Simi Sui Yuxuan Wang Haonan Xie Guangxuan Wu Yihao Cheng Enzuo Liu Fang He Chunnian He Tianshuai Wang Biao Chen Naiqin Zhao 《Science China Materials》 2025年第9期3277-3287,共11页
Carbon-supported single-atom catalysts(C-SACs)have been demonstrated as a strategy to promote the reversible conversion reaction of metal sulfide anodes in sodium-ion batteries(SIBs).However,the design principle of pr... Carbon-supported single-atom catalysts(C-SACs)have been demonstrated as a strategy to promote the reversible conversion reaction of metal sulfide anodes in sodium-ion batteries(SIBs).However,the design principle of promising C-SACs remains lacking for obtaining highly reversible metal sulfide anodes.We designed a phosphorus-doped carbon-supported single-atom Mn catalyst(PC-SAMn)with an asymmetrical dual active center.The sulfiphilic Mn and sodiophilic P active centers adsorb discharged Na 2S through Mn-S d-p and P-Na s-p orbital hybridizations.The asymmetrical dual active center induced the asymmetrical adsorption configuration of Na 2S,which efficiently weakened Na-S bond strength and facilitated the decomposition of Na 2S during charging.As a result,the designed catalyst enables typical MoS_(2) with a record-high compositional reversible degree of 89.61%and a low capacity decay ratio of only 0.18%per 100 cycles during 2000 cycles.The research establishes the“orbital hybridization-molecular structure-catalytic activity”relationship for guiding the design of highly reversible conversion-type materials. 展开更多
关键词 MoS_(2) reversible conversion reaction carbon-supported single atom catalyst dual active center sodium-ion battery
原文传递
Fluorinated soft carbon as an ultra-high energy density potassium-ion battery cathode enabled by a ternary phase K_(x)FC 被引量:3
20
作者 Pengyu Chen Bojun Wang +4 位作者 Zhenrui Wu Xiaobin Niu Chuying Ouyang Hong Li Liping Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期38-44,I0002,共8页
Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond ... Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations. 展开更多
关键词 Fluorinated carbon High energy density battery Potassium-ion battery conversion reaction K-free cathode
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部