Frequency generation in highly multimode nonlinear optical systems is inherently a complex process,giving rise to an exceedingly convoluted landscape of evolution dynamics.While predicting and controlling the global c...Frequency generation in highly multimode nonlinear optical systems is inherently a complex process,giving rise to an exceedingly convoluted landscape of evolution dynamics.While predicting and controlling the global conversion efficiencies in such nonlinear environments has long been considered impossible,here,we formally address this challenge even in scenarios involving a very large number of spatial modes.By utilizing fundamental notions from optical statistical mechanics,we develop a universal theoretical framework that effectively treats all frequency components as chemical reactants/products,capable of undergoing optical thermodynamic reactions facilitated by a variety of multi-wave mixing effects.These photon-photon reactions are governed by conservation laws that directly determine the optical temperatures and chemical potentials of the ensued chemical equilibria for each frequency species.In this context,we develop a comprehensive stoichiometric model and formally derive an expression that relates the chemical potentials to the optical stoichiometric coefficients,in a manner akin to atomic/molecular chemical reactions.This advancement unlocks new predictive capabilities that can facilitate the optimization of frequency generation in highly multimode photonic arrangements,surpassing the limitations of conventional schemes that rely exclusively on nonlinear optical dynamics.Notably,we identify a universal regime of Rayleigh-Jeans thermalization where an optical reaction at near-zero optical temperatures can promote the complete and entropically irreversible conversion of light to the fundamental mode at a target frequency.Our theoretical results are corroborated by numerical simulations in settings where second-harmonic generation,sum-frequency generation and four-wave mixing processes can manifest.展开更多
基金supported by the Air Force Offce of Scientific Research(AFOSR)Multidisciplinary University Research Initiative(MURI)award on Novel light-matter interactions in topologically non-trivial Weyl semimetal structures and systems(award No.FA9550-20-1-0322)AFOSR MURI award on Programmable systems with non-Hermitian quantum dynamics(award no.FA9550-21-1-0202)+5 种基金ONR MURI award on the classical entanglement of light(award No.N00014-20-1-2789)the Army Research Offce(W911NF-23-1-0312)the Department of Energy(DE-SCo022282)W.M.Keck Foundation,the Department of Energy(DE-SCo025224),MPS Simons collaboration(Simons grant No.733682)US Air Force Research Laboratory(FA86511820019)AFRL-Applied Research Solutions(S03015)(FA8650-19-C-1692).
文摘Frequency generation in highly multimode nonlinear optical systems is inherently a complex process,giving rise to an exceedingly convoluted landscape of evolution dynamics.While predicting and controlling the global conversion efficiencies in such nonlinear environments has long been considered impossible,here,we formally address this challenge even in scenarios involving a very large number of spatial modes.By utilizing fundamental notions from optical statistical mechanics,we develop a universal theoretical framework that effectively treats all frequency components as chemical reactants/products,capable of undergoing optical thermodynamic reactions facilitated by a variety of multi-wave mixing effects.These photon-photon reactions are governed by conservation laws that directly determine the optical temperatures and chemical potentials of the ensued chemical equilibria for each frequency species.In this context,we develop a comprehensive stoichiometric model and formally derive an expression that relates the chemical potentials to the optical stoichiometric coefficients,in a manner akin to atomic/molecular chemical reactions.This advancement unlocks new predictive capabilities that can facilitate the optimization of frequency generation in highly multimode photonic arrangements,surpassing the limitations of conventional schemes that rely exclusively on nonlinear optical dynamics.Notably,we identify a universal regime of Rayleigh-Jeans thermalization where an optical reaction at near-zero optical temperatures can promote the complete and entropically irreversible conversion of light to the fundamental mode at a target frequency.Our theoretical results are corroborated by numerical simulations in settings where second-harmonic generation,sum-frequency generation and four-wave mixing processes can manifest.