The exact analytic method was given by [1] . It can be used for arbitrary variable coefficient differential equations and the solution obtained can have the second order convergent precision. In this paper, a new high...The exact analytic method was given by [1] . It can be used for arbitrary variable coefficient differential equations and the solution obtained can have the second order convergent precision. In this paper, a new high precision algorithm is given based on [1], through a bending problem of variable cross-section beams. It can have the fourth convergent precision without increasing computation work. The present computation method is not only simple but also fast. The numerical examples are given at the end of this paper which indicate that the high convergent precision can be obtained using only a few elements. The correctness of the theory in this paper is confirmed.展开更多
Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), t...Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), the article deals with the precise rates in the genenralized law of the iterated logarithm for a kind of weighted infinite series of P(|S_n| ≥(ε + a_n)σn^(1/2)(log log n)~d).展开更多
文摘The exact analytic method was given by [1] . It can be used for arbitrary variable coefficient differential equations and the solution obtained can have the second order convergent precision. In this paper, a new high precision algorithm is given based on [1], through a bending problem of variable cross-section beams. It can have the fourth convergent precision without increasing computation work. The present computation method is not only simple but also fast. The numerical examples are given at the end of this paper which indicate that the high convergent precision can be obtained using only a few elements. The correctness of the theory in this paper is confirmed.
基金Supported by the National Natural Science Foundation of China(Grant No.61662037)the Scientific Program of Department of Education of Jiangxi Province(Grant Nos.GJJ150894GJJ150905)
文摘Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), the article deals with the precise rates in the genenralized law of the iterated logarithm for a kind of weighted infinite series of P(|S_n| ≥(ε + a_n)σn^(1/2)(log log n)~d).