To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) co...To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.展开更多
Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method base...Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.展开更多
Due to dynamic interaction between converters, design of control parameters of multi-converters medium-voltage DC (MVDC) power system is much more complicated than of a single-converter situation. Open-loop and closed...Due to dynamic interaction between converters, design of control parameters of multi-converters medium-voltage DC (MVDC) power system is much more complicated than of a single-converter situation. Open-loop and closed-loop transfer functions considering control-loops dynamic interaction between converters are developed, which are suitable for studying influence of control parameters on system stability. With the above transfer functions, a system-level control parameter design proce-dure for dynamic stability (e.g., oscillation frequency and damping factor) of system is proposed. If there are many converters, computational burden of system-level control parameters design procedure will be huge. For this reason, a control parameter sharing method is further proposed in this paper, which is based on dynamic interaction mechanism between converters. In this sharing method, control parameters of equivalent reduced-order model of the system are shared with each converter, so calculation burden of control parameters of system is reduced significantly. Consequently, dynamic stability of the system can be designed by equivalent reduced-order model. Experiments are conduced to validate the system-level control parameter design procedure.展开更多
文摘To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
基金support by the National Natural Science Foundation of China (No.52202474)China Postdoctoral Science Foundation (No.2023M731655)+3 种基金Major Projects of National Science and Technology,China (No.J2019-I-0020-0019)Advanced Aviation Power Innovation Workstation Project,China (No.HKCX2022-01-026-03)Basic Research Business Fees for Central Universities,China (No.NT2023004)Nanjing University of Aeronautics and Astronautics Forward-looking Layout Research Project,China (No.1002-ILA22037-1A22).
文摘Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1506800in part by the China Postdoctoral Science Foundation under Grant 2021M692378in part by the National Natural Science Foundation of China under Grant 51977142.
文摘Due to dynamic interaction between converters, design of control parameters of multi-converters medium-voltage DC (MVDC) power system is much more complicated than of a single-converter situation. Open-loop and closed-loop transfer functions considering control-loops dynamic interaction between converters are developed, which are suitable for studying influence of control parameters on system stability. With the above transfer functions, a system-level control parameter design proce-dure for dynamic stability (e.g., oscillation frequency and damping factor) of system is proposed. If there are many converters, computational burden of system-level control parameters design procedure will be huge. For this reason, a control parameter sharing method is further proposed in this paper, which is based on dynamic interaction mechanism between converters. In this sharing method, control parameters of equivalent reduced-order model of the system are shared with each converter, so calculation burden of control parameters of system is reduced significantly. Consequently, dynamic stability of the system can be designed by equivalent reduced-order model. Experiments are conduced to validate the system-level control parameter design procedure.