This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded co...This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded control inputs.Under the condition that the initial network is connected,the network will be connected all the time and all agents and the virtual leader can attain the same position and move with the same velocity.A simulation example is proposed to illustrate the effective of the proposed algorithm.展开更多
In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal f...In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal for each actuator is quantized by sector-bounded quantizers,including the logarithmic quantizer and the hysteresis quantizer.By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal,the influence caused by input quantization and external disturbance is properly compensated for.Moreover,with the aid of the adaptive control technique,our approach can achieve attitude tracking without the explicit knowledge of inertial parameters.Unlike existing attitude control schemes for spacecraft,in this paper,the quantization parameters can be unknown,and the bounds of inertial parameters and disturbance are also not needed.In addition to proving the stability of the closed-loop system,the relationship between the control performance and design parameters is analyzed.Simulation results are presented to illustrate the effectiveness of the proposed scheme.展开更多
An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter u...An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter uncertainties,external disturbances and input saturation.The partial loss of actuator effectiveness and the additive faults are considered simultaneously to deal with actuator faults,and the prior knowledge of bounds on the effectiveness factors of the actuators is assumed to be unknown.A fault-tolerant control version is designed to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of the partial loss of actuator effectiveness faults.The proposed fault-tolerant attitude controller ensures robustness and stabilization,and it achieves H_∞ optimality with respect to a family of cost functionals.The usefulness of the proposed algorithms is assessed and compared with the conventional approaches through numerical simulations.展开更多
Purpose–The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle(UAV)systems to achieve predefined flying shape.Design/methodology/approach–Two time-optimal prot...Purpose–The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle(UAV)systems to achieve predefined flying shape.Design/methodology/approach–Two time-optimal protocols are proposed for the situations with or without human control input,respectively.Then,Pontryagin’s minimum principle approach is applied to deal with the time-optimal control problems for UAV systems,where the cost function,the initial and terminal conditions are given in advance.Moreover,necessary conditions are derived to ensure that the given performance index is optimal.Findings–The effectiveness of the obtained time-optimal control protocols is verified by two contrastive numerical simulation examples.Consequently,the proposed protocolscan successfully achieve the prescribed flying shape.Originality/value–This paper proposes a solution to solve the time-optimal control problems for multiple UAV systems to achieve predefined flying shape.展开更多
A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and c...A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.展开更多
This paper studies a robust adaptive compensation Fault Tolerant Control(FTC)for the medium-scale Unmanned Autonomous Helicopter(UAH)in the presence of external disturbances,actuator faults and input saturation.To imp...This paper studies a robust adaptive compensation Fault Tolerant Control(FTC)for the medium-scale Unmanned Autonomous Helicopter(UAH)in the presence of external disturbances,actuator faults and input saturation.To improve the disturbance rejection capacity of the UAH system in actuator healthy case,an adaptive control method is adopted to cope with the external disturbances and a nominal controller is proposed to stabilize the system.Meanwhile,compensation control inputs are designed to reduce the negative effects derived from actuator faults and input saturation.Based on the backstepping control and inner-outer loop control technologies,a robust adaptive FTC scheme is developed to guarantee the tracking errors convergence.Under the presented FTC controller,the uniform ultimate boundedness of all closed-loop signals is ensured via Lyapunov stability analysis.Simulation results demonstrate the effectiveness of the proposed control algorithm.展开更多
The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is...The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is presented for the longitudinal model of an AHV, which guarantees that velocity and altitude track their reference trajectories at an exponential convergence rate. However, this method needs to know the minimum value of the actuator efficiency factor and the upper bound of the external disturbances, which makes it not easy to implement. Then an improved adaptive fault-tolerant control scheme is proposed, where two adaptive laws are employed to estimate the upper bound of the external disturbances and the minimum value of the actuator efficiency factor, respectively. Secondly, the problem of designing a control scheme with control constraints is further considered, and a new adaptive fault-tolerant control strategy with input saturation is designed to guarantee that velocity and altitude track their reference trajectories. Finally, simulation results are given to show the effectiveness of the proposed methods.展开更多
In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach...In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
This paper addresses control for the synchronization of Chen chaotic systems via sector nonlinear inputs. Feedback control, adaptive control, fast sliding mode and robust control approaches based on single state feedb...This paper addresses control for the synchronization of Chen chaotic systems via sector nonlinear inputs. Feedback control, adaptive control, fast sliding mode and robust control approaches based on single state feedback controller are investigated. In these cases, sufficient conditions for the synchronization are obtained analytically. Numerical simulations verify the control performances.展开更多
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor ...A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.展开更多
A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of i...A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.展开更多
A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and...A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.展开更多
This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuato...This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.展开更多
In this paper, we address the control problem of an uncertain robotic manipulator with input saturations, unknown input scalings and disturbances. For this purpose, a model reference adaptive control like (MRAC-like...In this paper, we address the control problem of an uncertain robotic manipulator with input saturations, unknown input scalings and disturbances. For this purpose, a model reference adaptive control like (MRAC-like) is used to handle the input saturations. The model reference is input to state stable (ISS) and driven by the errors between the required control signals and input saturations. The uncertain parameters are dealt with by using linear-in-the-parameters property of robotic dynamics, while unknown input scalings and disturbances are handled by non-regressor based approach. Our design ensures that all the signals in the closed-loop system are bounded, and the tracking error converges to the compact set which depends on the predetermined bounds of the control inputs. Simulation on a planar elbow manipulator with two joints is provided to illustrate the effectiveness of the proposed controller.展开更多
Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is...Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.展开更多
A finite-time controller is designed for a class of nonlinear systems subject to sector nonlinear inputs. A novel and simple approach is suggested based on the finite-time control principle. The designed sliding-mode ...A finite-time controller is designed for a class of nonlinear systems subject to sector nonlinear inputs. A novel and simple approach is suggested based on the finite-time control principle. The designed sliding-mode controller can drive a chaotic system to track a smooth target signal in a finite time. The chaotic Duffing-Holmes oscillator is used for verification and demonstration.展开更多
This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the roboti...This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.展开更多
In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model sw...In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.展开更多
文摘This paper investigates second-order consensus of multi-agent systems with a virtual leader of varying velocity while preserving network connectivity.We propose a novel second-order consensus algorithm with bounded control inputs.Under the condition that the initial network is connected,the network will be connected all the time and all agents and the virtual leader can attain the same position and move with the same velocity.A simulation example is proposed to illustrate the effective of the proposed algorithm.
文摘In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal for each actuator is quantized by sector-bounded quantizers,including the logarithmic quantizer and the hysteresis quantizer.By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal,the influence caused by input quantization and external disturbance is properly compensated for.Moreover,with the aid of the adaptive control technique,our approach can achieve attitude tracking without the explicit knowledge of inertial parameters.Unlike existing attitude control schemes for spacecraft,in this paper,the quantization parameters can be unknown,and the bounds of inertial parameters and disturbance are also not needed.In addition to proving the stability of the closed-loop system,the relationship between the control performance and design parameters is analyzed.Simulation results are presented to illustrate the effectiveness of the proposed scheme.
基金the National High Technology Research and Development Program(863)of China(No.2012AA121602)the Preliminary Research Program of the General Armament Department of China(No.51322050202)
文摘An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter uncertainties,external disturbances and input saturation.The partial loss of actuator effectiveness and the additive faults are considered simultaneously to deal with actuator faults,and the prior knowledge of bounds on the effectiveness factors of the actuators is assumed to be unknown.A fault-tolerant control version is designed to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of the partial loss of actuator effectiveness faults.The proposed fault-tolerant attitude controller ensures robustness and stabilization,and it achieves H_∞ optimality with respect to a family of cost functionals.The usefulness of the proposed algorithms is assessed and compared with the conventional approaches through numerical simulations.
基金supported by the National Natural Science Foundation of China under Grant Nos 61602163 and 61471163the Science Fund for Distinguished Young Scholars of Hubei Province under Grant No.2017CFA034the Natural Science Foundation of Hubei Province under 2016CFC735.The Hubei Education Department Science and Technology Research Program for young talents under Grant No.Q20182503.
文摘Purpose–The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle(UAV)systems to achieve predefined flying shape.Design/methodology/approach–Two time-optimal protocols are proposed for the situations with or without human control input,respectively.Then,Pontryagin’s minimum principle approach is applied to deal with the time-optimal control problems for UAV systems,where the cost function,the initial and terminal conditions are given in advance.Moreover,necessary conditions are derived to ensure that the given performance index is optimal.Findings–The effectiveness of the obtained time-optimal control protocols is verified by two contrastive numerical simulation examples.Consequently,the proposed protocolscan successfully achieve the prescribed flying shape.Originality/value–This paper proposes a solution to solve the time-optimal control problems for multiple UAV systems to achieve predefined flying shape.
基金Supported by Deep Exploration Technology and Experimentation Project(201311194-04)
文摘A new scheme of adaptive control is proposed for a class of linear time-invariant( LTI) dynamical systems,especially in aerospace,with matched parametric uncertainties and input constraints. Based on a typical and conventional direct model reference adaptive control scheme,various modifications have been employed to achieve the goal. "C omposite model reference adaptive control"of higher performance is seam-lessly combined with "positive μ-mod",which consequently results in a smooth tracking trajectory despite of the input constraints. In addition,bounded-gain forgetting is utilized to facilitate faster convergence of parameter estimates. The stability of the closed-loop systemcan be guaranteed by using Lyapunov theory.The merits and effectiveness of the proposed method are illustrated by a numerical example of the longitudinal dynamical systems of a fixed-wing airplane.
基金supported in part by the National Natural Science Foundation of China(Nos.61825302,61573184)in part by the Jiangsu Natural Science Foundation of China(No.BK20171417)in part by the Aeronautical Science Foundation of China(No.20165752049)
文摘This paper studies a robust adaptive compensation Fault Tolerant Control(FTC)for the medium-scale Unmanned Autonomous Helicopter(UAH)in the presence of external disturbances,actuator faults and input saturation.To improve the disturbance rejection capacity of the UAH system in actuator healthy case,an adaptive control method is adopted to cope with the external disturbances and a nominal controller is proposed to stabilize the system.Meanwhile,compensation control inputs are designed to reduce the negative effects derived from actuator faults and input saturation.Based on the backstepping control and inner-outer loop control technologies,a robust adaptive FTC scheme is developed to guarantee the tracking errors convergence.Under the presented FTC controller,the uniform ultimate boundedness of all closed-loop signals is ensured via Lyapunov stability analysis.Simulation results demonstrate the effectiveness of the proposed control algorithm.
基金supported by the National Natural Science Foundation of China(9101600461125306+2 种基金61203011)the Program for New Century Excellent Talents in University (NCET-10-0328)the Natural Science Foundation of Jiangsu Province(BK2012327)
文摘The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is presented for the longitudinal model of an AHV, which guarantees that velocity and altitude track their reference trajectories at an exponential convergence rate. However, this method needs to know the minimum value of the actuator efficiency factor and the upper bound of the external disturbances, which makes it not easy to implement. Then an improved adaptive fault-tolerant control scheme is proposed, where two adaptive laws are employed to estimate the upper bound of the external disturbances and the minimum value of the actuator efficiency factor, respectively. Secondly, the problem of designing a control scheme with control constraints is further considered, and a new adaptive fault-tolerant control strategy with input saturation is designed to guarantee that velocity and altitude track their reference trajectories. Finally, simulation results are given to show the effectiveness of the proposed methods.
文摘In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金This work was partially supported by Nature Science Foundation of China (No. 60374037, 60574036)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050055013)the Program for New Century Excellent Talents of China (NCET)
文摘This paper addresses control for the synchronization of Chen chaotic systems via sector nonlinear inputs. Feedback control, adaptive control, fast sliding mode and robust control approaches based on single state feedback controller are investigated. In these cases, sufficient conditions for the synchronization are obtained analytically. Numerical simulations verify the control performances.
基金National Natural Science Foundation of China(10902003)
文摘A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.
基金supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120)the Aeronautical Science Foundation of China(No. 20155896026)
文摘A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.
文摘A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2012AA041701)the Fundamental Research Funds for Central Universities of China(Grant No.2013JBZ007)+1 种基金the National Natural Science Foundation of China(Grant Nos.61233001,61322307,61304196,and 61304157)the Research Program of Beijing Jiaotong University,China(Grant No.RCS2012ZZ003)
文摘This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks(RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode(HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes.
文摘In this paper, we address the control problem of an uncertain robotic manipulator with input saturations, unknown input scalings and disturbances. For this purpose, a model reference adaptive control like (MRAC-like) is used to handle the input saturations. The model reference is input to state stable (ISS) and driven by the errors between the required control signals and input saturations. The uncertain parameters are dealt with by using linear-in-the-parameters property of robotic dynamics, while unknown input scalings and disturbances are handled by non-regressor based approach. Our design ensures that all the signals in the closed-loop system are bounded, and the tracking error converges to the compact set which depends on the predetermined bounds of the control inputs. Simulation on a planar elbow manipulator with two joints is provided to illustrate the effectiveness of the proposed controller.
文摘Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant 20050055013), and the Program for New Century Excellent Talents of China (NCET).
文摘A finite-time controller is designed for a class of nonlinear systems subject to sector nonlinear inputs. A novel and simple approach is suggested based on the finite-time control principle. The designed sliding-mode controller can drive a chaotic system to track a smooth target signal in a finite time. The chaotic Duffing-Holmes oscillator is used for verification and demonstration.
基金supported by the National Natural Science Foundation of China(61703232)the Natural Science Foundation of Shandong Province(ZR2017MF068,ZR2017QF013)
文摘This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.
基金supported by the Aeronautics Science Foundation of China(No.2007ZC52039)the National Natural Science Foundation of China(No.90816023)
文摘In this paper,an active fault accommodate strategy is proposed for the plant in the presence of actuator fault and input constraints,which is a combination of a direct adaptive control algorithm with multiple model switching.The μ-modification is introduced in the model reference architecture to construct the adaptive controller.The proof of stability is based on the candidate Lyapunov function,while appropriate switching of multiple models guarantees asymptotic tracking of the system states and the boundedness of all signals.Simulation results illustrate the efficiency of the proposed method.