We proposed an optimal design method to expand the bandwidth for the control of large hydraulic Stewart platform.The method is based on generalized natural frequency and takes hydraulic oil into consideration.A Lagran...We proposed an optimal design method to expand the bandwidth for the control of large hydraulic Stewart platform.The method is based on generalized natural frequency and takes hydraulic oil into consideration.A Lagrangian formulation which considers the whole leg inertia is presented to obtain the accurate equivalent mass matrix.Using the model,the effect of leg inertia and the influence of design parameters on the generalized natural frequency are investigated.Finally,numerical examples are presented to validate and confirm the efficiency of the mathematical model.The results show that the leg inertia,especially the piston part plays an important role in the dynamics.The optimum diameter ratio of the base to the moving platform is between 2 and 3,and the optimum joint angle ratio of the base to the moving platform is about 1.The smaller joint angles and a longer leg stroke are favorable for raising system frequencies.The system oil should be preprocessed for large platforms with a requirement for good dynamic performance.展开更多
This paper proposes an efficient adaptive bandwidth allocation scheme of virtual paths. The bandwidth of a virtual path is dynamically adjusted according to the link residual capacity. The scheme can remarkably reduce...This paper proposes an efficient adaptive bandwidth allocation scheme of virtual paths. The bandwidth of a virtual path is dynamically adjusted according to the link residual capacity. The scheme can remarkably reduce the load on node processing and simplify the network architecture, while keeping higher transmission efficiency. The excellent performance is proved by detailed theoretical analyses.展开更多
Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stabil...Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.展开更多
In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical ...In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical solution of the motion equation of the system when the main resonance and the 1:2 internal resonance occur simultaneously is obtained by multiple scale method, experimentally measured natural frequencies of nonlinear beams. The effects of excitation amplitude, delay feedback coefficients and nonlinear coefficients on saturation control are investigated. The results of the study show that the bandwidth of the saturation control can be increased by increasing the value of the external excitation, the nonlinear coefficients enhance the nonlinear phenomena of the system.展开更多
The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission co...The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission control scheme under the centralized bandwidth broker model is proposed. In the proposed scheme, the flow requests are classified into two classes and get differentiated treatment according to their QoS demands. We demonstrate that this admission control scheme can not only improve the resource utilization but also guarantee the flows' QoS. Furthermore, the admission control is divided into two phases: edge admission control and interior admission control. During the interior phase, the PoQ scheme is adopted, which enhances the call processing capability of the bandwidth broker. The simulation results show that the proposed scheme can result in lower flow blocking probability and higher resource utilization. And it also reduces the number of QoS state accesses/updates, thereby increasing the overall call processing capability of the bandwidth broker.展开更多
An improved model for ultrasonic transducers is proposed. By considering only the first symmetric mode, each layer is represented as an acoustical transmission line in modeling of bulk wave transducers. In imaging app...An improved model for ultrasonic transducers is proposed. By considering only the first symmetric mode, each layer is represented as an acoustical transmission line in modeling of bulk wave transducers. In imaging applications, wide bandwidth and short time duration are required. The approach we have used consists of impedance matching the front face of the piezoelectric transducer to the propagating medium with a quarter wavelength impedance matching layer and inserting an nnmatching quarter wavelength acoustical layer between the rear face and backing material. A heavy backing would degrade the wide-band phenomena, but show a time duration shorter than 0.5 μs for imaging applications. PSPICE code of the controlled source model is implemented to precisely predict the performance of the matched transducers such as impedance, insertion loss, bandwidth and duration of the impulse response. Good agreement between the simulation and experimental results has been achieved.展开更多
This paper presents a streaming system using scalable video coding based on H.264/AVC. The system provides a congestion control algorithm supported by channel bandwidth estimation of the client. It uses retransmission...This paper presents a streaming system using scalable video coding based on H.264/AVC. The system provides a congestion control algorithm supported by channel bandwidth estimation of the client. It uses retransmission only for packets of the base layer to disburden the congested network. The bandwidth estimation allows for adjusting the transmission rate quickly to the current available bandwidth of the network. Compared to binomial congestion control, the proposed system allows for shorter start-up times and data rate adaptation. The paper describes the components of this streaming system and the results of experiments showing that the proposed approach works effectively for streaming video.展开更多
With the rapid deployments of the active disturbance rejection control (ADRC) as a bonafide industrial technology in the background, this paper summarizes some recent results in the analysis of linear ADRC and offer...With the rapid deployments of the active disturbance rejection control (ADRC) as a bonafide industrial technology in the background, this paper summarizes some recent results in the analysis of linear ADRC and offers explanations in the frequency response language with which practicing engineers are familiar. Critical to this endeavor is the concept of bandwidth, which has been used in a more general sense. It is this concept that can serve as the link between the otherwise opaque state space formulation of the ADRC and the command design considerations and concerns shared by practicing engineers. The remarkable characteristics of a simple linear ADRC was first shown in the frequency domain, followed by the corresponding analysis in time domain, where the relationship between the tracking error and the ADRC bandwidth is established. It is shown that such insight is only possible by using the method of solving linear differential equations, instead of the more traditional techniques such as the Lyapunov methods, which tend to be more conservative and difficult to grasp by engineers. The insight obtained from such analysis is further demonstrated in the simulation validation.展开更多
A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient condit...A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.展开更多
基金supported by the National Basic Research Program(973)of China(No.2006CB705400)the National Natural Science Founda-tion of China(No.50705082)the National Natural Science Fund for Distinguished Young Scholar(No.50425518),China
文摘We proposed an optimal design method to expand the bandwidth for the control of large hydraulic Stewart platform.The method is based on generalized natural frequency and takes hydraulic oil into consideration.A Lagrangian formulation which considers the whole leg inertia is presented to obtain the accurate equivalent mass matrix.Using the model,the effect of leg inertia and the influence of design parameters on the generalized natural frequency are investigated.Finally,numerical examples are presented to validate and confirm the efficiency of the mathematical model.The results show that the leg inertia,especially the piston part plays an important role in the dynamics.The optimum diameter ratio of the base to the moving platform is between 2 and 3,and the optimum joint angle ratio of the base to the moving platform is about 1.The smaller joint angles and a longer leg stroke are favorable for raising system frequencies.The system oil should be preprocessed for large platforms with a requirement for good dynamic performance.
文摘This paper proposes an efficient adaptive bandwidth allocation scheme of virtual paths. The bandwidth of a virtual path is dynamically adjusted according to the link residual capacity. The scheme can remarkably reduce the load on node processing and simplify the network architecture, while keeping higher transmission efficiency. The excellent performance is proved by detailed theoretical analyses.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB921800the National Natural Science Foundation of China under Grant Nos 11227901,91021005,11274299,11104262 and 10834005the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400
文摘Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
文摘In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical solution of the motion equation of the system when the main resonance and the 1:2 internal resonance occur simultaneously is obtained by multiple scale method, experimentally measured natural frequencies of nonlinear beams. The effects of excitation amplitude, delay feedback coefficients and nonlinear coefficients on saturation control are investigated. The results of the study show that the bandwidth of the saturation control can be increased by increasing the value of the external excitation, the nonlinear coefficients enhance the nonlinear phenomena of the system.
文摘The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission control scheme under the centralized bandwidth broker model is proposed. In the proposed scheme, the flow requests are classified into two classes and get differentiated treatment according to their QoS demands. We demonstrate that this admission control scheme can not only improve the resource utilization but also guarantee the flows' QoS. Furthermore, the admission control is divided into two phases: edge admission control and interior admission control. During the interior phase, the PoQ scheme is adopted, which enhances the call processing capability of the bandwidth broker. The simulation results show that the proposed scheme can result in lower flow blocking probability and higher resource utilization. And it also reduces the number of QoS state accesses/updates, thereby increasing the overall call processing capability of the bandwidth broker.
基金supported by the National Science Council of the Republic China (No.NSC 98-2221-E-468-023)
文摘An improved model for ultrasonic transducers is proposed. By considering only the first symmetric mode, each layer is represented as an acoustical transmission line in modeling of bulk wave transducers. In imaging applications, wide bandwidth and short time duration are required. The approach we have used consists of impedance matching the front face of the piezoelectric transducer to the propagating medium with a quarter wavelength impedance matching layer and inserting an nnmatching quarter wavelength acoustical layer between the rear face and backing material. A heavy backing would degrade the wide-band phenomena, but show a time duration shorter than 0.5 μs for imaging applications. PSPICE code of the controlled source model is implemented to precisely predict the performance of the matched transducers such as impedance, insertion loss, bandwidth and duration of the impulse response. Good agreement between the simulation and experimental results has been achieved.
文摘This paper presents a streaming system using scalable video coding based on H.264/AVC. The system provides a congestion control algorithm supported by channel bandwidth estimation of the client. It uses retransmission only for packets of the base layer to disburden the congested network. The bandwidth estimation allows for adjusting the transmission rate quickly to the current available bandwidth of the network. Compared to binomial congestion control, the proposed system allows for shorter start-up times and data rate adaptation. The paper describes the components of this streaming system and the results of experiments showing that the proposed approach works effectively for streaming video.
文摘With the rapid deployments of the active disturbance rejection control (ADRC) as a bonafide industrial technology in the background, this paper summarizes some recent results in the analysis of linear ADRC and offers explanations in the frequency response language with which practicing engineers are familiar. Critical to this endeavor is the concept of bandwidth, which has been used in a more general sense. It is this concept that can serve as the link between the otherwise opaque state space formulation of the ADRC and the command design considerations and concerns shared by practicing engineers. The remarkable characteristics of a simple linear ADRC was first shown in the frequency domain, followed by the corresponding analysis in time domain, where the relationship between the tracking error and the ADRC bandwidth is established. It is shown that such insight is only possible by using the method of solving linear differential equations, instead of the more traditional techniques such as the Lyapunov methods, which tend to be more conservative and difficult to grasp by engineers. The insight obtained from such analysis is further demonstrated in the simulation validation.
基金This work is supported by the National Natural Science Foundation of China (No. 60528007, 10372002, 60274001, 60304003), the National KeyBasic Research and Development Program (No. 2002CB312200).
文摘A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.
基金Acknowledgements: This work was supported by National Natural Science Foundation of China (No.60274014) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20020487006).