OBJECTIVE:To evaluate the efficacy of electroacupuncture(EA)at scalp motor area for treating post-stroke wrist dyskinesia and its influence on the function of wrist movement-related agonistic muscles.METHODS:A randomi...OBJECTIVE:To evaluate the efficacy of electroacupuncture(EA)at scalp motor area for treating post-stroke wrist dyskinesia and its influence on the function of wrist movement-related agonistic muscles.METHODS:A randomized,single-blind,controlled clinical trial was conducted.Sixty-six patients undergoing post-stroke wrist dyskinesia were enrolled and randomized 1:1 to EA or control group.Patients in the control group received manual acupuncture in the scalp motor area(MS 6)on the lesion side.The same acupoint was selected to accept EA stimulation in the EA group.All patients were treated six times a week for three weeks.The primary outcome was the Chinese Stroke Scale(CSS)score.The secondary outcomes included upper limb-related Barthel Index(BI)score,active range of motion(AROM)of the wrist joint,and root mean square(RMS)of the four agonistic muscles associated with wrist motion on the hemiplegic side of patients,i.e.,the extensor carpi radialis longus(ECRL),extensor digitorum(ED),flexor carpi radialis(FCR)and flexor carpi ulnaris(FCU).The above indicators were measured before and after three weeks of treatment.RESULTS:After 3-week treatment,the CSS score and AROM of wrist dorsiflexion of the EA group were better than those in the control group(P=0.038,P=0.047).The differences between the two groups of BI scores and AROM of wrist flexion were not significant(P>0.05).All RMS of the EA group were higher than those in the control group(ECRL:P=0.047,ED:P=0.048,FCR:P=0.049,FCU:P=0.047).The total effective rate in the EA group was 87.50%(28/32),which was higher than that in the control group(77.42%,24/31,P=0.048).CONCLUSION:EA stimulation of the scalp motor area can promote the recovery of the strength and function of the agonistic muscles related to wrist movement and effectively improve post-stroke wrist dyskinesia.展开更多
Ferromagnetic materials play an important role in memory materials,but conventional control methods are often limited by issues such as high power consumption and volatility.Multiferroic heterostructures provide a pro...Ferromagnetic materials play an important role in memory materials,but conventional control methods are often limited by issues such as high power consumption and volatility.Multiferroic heterostructures provide a promising alternative to achieve low power consumption and nonvolatile electric control of magnetic properties.In this paper,a two-dimensional multiferroic van der Waals heterostructure OsCl_(2)/Sc_(2)CO_(2),which is composed of ferromagnetic monolayer OsCl_(2)and ferroelectric monolayer Sc_(2)CO_(2),is studied by first-principles density functional theory.The results show that by reversing the direction of the electric polarization of Sc_(2)CO_(2),OsCl_(2)can be transformed from a semiconductor to a half-metal,demonstrating a nonvolatile electrical manipulation of the heterostructure through ferroelectric polarization.The underlying physical mechanism is explained by band alignments and charge density differences.Furthermore,based on the heterostructure,we construct a multiferroic tunnel junction with a tunnel electroresistance ratio of 3.38×10^(14)%and a tunnel magnetoresistance ratio of 5.04×10^(6)%,allowing control of conduction states via instantaneous electric or magnetic fields.The findings provide a feasible strategy for designing advanced nanodevices based on the giant tunnel electroresistance and tunnel magnetoresistance effects.展开更多
This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bound...This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.展开更多
Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the...The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.展开更多
In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal cas...In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of...Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of each UUV is totally unknown.Firstly,a kinematic control law is constructed by designing a vertical line-of-sight(LOS)guidance scheme.展开更多
This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and no...This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.展开更多
Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed To...Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.展开更多
Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on...Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.展开更多
This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state d...This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.展开更多
The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the on...The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the online estimation algorithm,the sliding mode method and the Nussbaum gain technique,a group of orientation functions are employed to handlethe unknown sign-switching virtual control coefficients.The controllaw is combined with the orientation functions and the barrierfunctions lumped in a recursive manner.It achieves outputtracking with the preassigned rate,overshoot,and accuracy.Incontrast with the existing solutions,it is effective for the nearlymodel-free case,with the requirement for information of neitherthe system nonlinearities nor their bounding functions of theplant,nor the bounds of the disturbances.In addition,our controllerexhibits significant simplicity,without parameter identification,disturbance estimation,function approximation,derivativecalculation,dynamic surfaces,or command filtering.Twosimulation examples are conducted to substantiate the efficacyand advantages of our approach.展开更多
A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited ...A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited by the contact process,bringing detrimental effects for the accurate and safe operations.Besides,the contact-induced strong disturbance makes most of the existing controllers difficult to achieve guaranteed transient and steady-state performances.To conquer the above problems,a novel Nonlinear Energy Sink with Active Varying Stiffness(NES-AVS)device is proposed to significantly reduce the vibrations,wherein the AVS is realized by a small steel plate with the compression force adjusted by a piezoelectric actuator.Moreover,a composite prescribed performance detumbling controller is designed based on the fast non-singular terminal sliding mode control technique.A performance function is adopted to constrain the tracking errors to meet the prescribed dynamic properties,and an adaptive law is incorporated into the control framework to effectively reject the disturbance.Extensive simulations are conducted to demonstrate the effectiveness of the proposed NES-AVS device and controller.展开更多
Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precis...Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.展开更多
A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to ...A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.展开更多
This paper focuses on the key role and practical paths of operating room nurses in infection control,and studies the difficult problems in the prevention and control of surgical site infections.Analyze the infection r...This paper focuses on the key role and practical paths of operating room nurses in infection control,and studies the difficult problems in the prevention and control of surgical site infections.Analyze the infection risk links in the operating room and the core responsibilities of nurses,reveal the multiple role mechanisms of nurses in infection control,design practical strategies from dimensions such as process optimization,skill improvement,and monitoring feedback,and construct an infection control system involving all staff.Research shows that operating room nurses can effectively reduce the risk of infection,improve medical quality,provide core guarantees for patient safety,and promote the transformation of operating room infection control towards refined management through practical actions such as standardized operation execution,real-time risk monitoring,and team collaboration supervision.展开更多
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty...This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.展开更多
This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport...This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport aircraft,and different initial deviations.First,a novelcontrol-oriented Six-Degree-Of-Freedom(6-DOF)UAV model considering airflow disturbancesis established for better consistency with the actual UAV system.Then,to achieve satisfactory per-formance in the approaching process,a Flexible Appointed-time Prescribed Performance Control(FAPPC)algorithm,with the features of user-specified time convergence,no overshoot,indepen-dence from the initial value,and singularity-free,is proposed.Specifically,to solve the singularityissue encountered by the existing PPC methods in dealing with sudden disturbances,an adaptiveadjustment signal is introduced in FAPPC to perceive the threat of increasing error and relax thepreset boundaries appropriately.Moreover,minimum learning parameter-based neural networkestimators are developed to approximate unknown lumped disturbances at a low computationalcost.Finally,the stability of the closed system is analyzed via Lyapunov synthesis,and the effective-ness and advantages of the proposed control scheme are demonstrated via simulation andHardware-In-the-Loop(HIL)experimental validation.展开更多
As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utili...As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.展开更多
基金Supported by the National Natural Science Foundation of China:Exploration of Key Factors and Mechanisms of Modulating Motor Function Reconstruction After Cerebral Infarction Through Multimodal Brain Functional Connectivity Perspective in Procedural Acupoint Electrical Stimulation Research(No.82374601)the Jointly Guided Program of Natural Science Foundation of Heilongjiang Province:Quantitative Study on the Role of Scalp Acupuncture in the Motor Area in Promoting Motor Function Reconstruction after Stroke(No.LH2019H113)+1 种基金the Innovation Team Construction Project of Heilongjiang University of Chinese Medicine:Construction of a Doctoral Research and Innovation Team in Acupuncture Science(No.2017sit01)the Traditional Chinese Medicine Research Project of Heilongjiang Province:Clinical Study on the Promotion of Upper Limb Motor Function Reconstruction in Post-Stroke Patients Using Optimal Limb Positioning with Electroacupuncture(No.ZHY2022-171)。
文摘OBJECTIVE:To evaluate the efficacy of electroacupuncture(EA)at scalp motor area for treating post-stroke wrist dyskinesia and its influence on the function of wrist movement-related agonistic muscles.METHODS:A randomized,single-blind,controlled clinical trial was conducted.Sixty-six patients undergoing post-stroke wrist dyskinesia were enrolled and randomized 1:1 to EA or control group.Patients in the control group received manual acupuncture in the scalp motor area(MS 6)on the lesion side.The same acupoint was selected to accept EA stimulation in the EA group.All patients were treated six times a week for three weeks.The primary outcome was the Chinese Stroke Scale(CSS)score.The secondary outcomes included upper limb-related Barthel Index(BI)score,active range of motion(AROM)of the wrist joint,and root mean square(RMS)of the four agonistic muscles associated with wrist motion on the hemiplegic side of patients,i.e.,the extensor carpi radialis longus(ECRL),extensor digitorum(ED),flexor carpi radialis(FCR)and flexor carpi ulnaris(FCU).The above indicators were measured before and after three weeks of treatment.RESULTS:After 3-week treatment,the CSS score and AROM of wrist dorsiflexion of the EA group were better than those in the control group(P=0.038,P=0.047).The differences between the two groups of BI scores and AROM of wrist flexion were not significant(P>0.05).All RMS of the EA group were higher than those in the control group(ECRL:P=0.047,ED:P=0.048,FCR:P=0.049,FCU:P=0.047).The total effective rate in the EA group was 87.50%(28/32),which was higher than that in the control group(77.42%,24/31,P=0.048).CONCLUSION:EA stimulation of the scalp motor area can promote the recovery of the strength and function of the agonistic muscles related to wrist movement and effectively improve post-stroke wrist dyskinesia.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074213,11574108,and 12104253)the National Key R&D Program of China(Grant No.2022YFA1403103)+2 种基金the Major Basic Program of the Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Provincial(Grant No.ZR2023MA082)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Ferromagnetic materials play an important role in memory materials,but conventional control methods are often limited by issues such as high power consumption and volatility.Multiferroic heterostructures provide a promising alternative to achieve low power consumption and nonvolatile electric control of magnetic properties.In this paper,a two-dimensional multiferroic van der Waals heterostructure OsCl_(2)/Sc_(2)CO_(2),which is composed of ferromagnetic monolayer OsCl_(2)and ferroelectric monolayer Sc_(2)CO_(2),is studied by first-principles density functional theory.The results show that by reversing the direction of the electric polarization of Sc_(2)CO_(2),OsCl_(2)can be transformed from a semiconductor to a half-metal,demonstrating a nonvolatile electrical manipulation of the heterostructure through ferroelectric polarization.The underlying physical mechanism is explained by band alignments and charge density differences.Furthermore,based on the heterostructure,we construct a multiferroic tunnel junction with a tunnel electroresistance ratio of 3.38×10^(14)%and a tunnel magnetoresistance ratio of 5.04×10^(6)%,allowing control of conduction states via instantaneous electric or magnetic fields.The findings provide a feasible strategy for designing advanced nanodevices based on the giant tunnel electroresistance and tunnel magnetoresistance effects.
基金supported by the National Natural Science Foundation of China(Nos.51775021,52302511)the Fundamental Research Funds for the Central Universities,China(Nos.501JCGG2024129003,501JCGG2024129005,501JCGG2024129006),the Fundamental Research Funds for the Central Universities,China(No.YWF-24-JC-09)the National Key Research and Development Program of China(No.2018YFC1506401)。
文摘This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
基金Supported by the Guiding Project of Science and Technology Research Plan of Hubei Provincial Department of Education(B2022458)。
文摘The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.
基金supported in part the National Key Research and Development Program of China(2021YFC2902703)Open Foundation of State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM-KZSKL-2022-6)the National Natural Science Foundation of China(62173078,61873049).
文摘In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported by the National Science and Technology Major Project(2022ZD0119902)the Doctoral Scientific Research Foundation of Liaoning Province(2023-BS-077)+2 种基金the Postdoctoral Research Foundation of China(2024M751980)the Open Project of State Key Laboratory of Maritime Technology and Safety(SKLMTA-DMU2024Y3)Bolian Research Funds of Dalian Maritime University/Fundamental Research Funds for the Central Universities(3132023616).
文摘Dear Editor,This letter is concerned with a coordinated path following control method for multiple unmanned underwater vehicles(UUVs)to carry out maritime search and rescue(MSR)missions.The kinetic model parameters of each UUV is totally unknown.Firstly,a kinematic control law is constructed by designing a vertical line-of-sight(LOS)guidance scheme.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61991400/61991403,61933012,62250710167,62203078)+2 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Central University Project(2023CDJKYJH047)the Innovation Support Program for International Students Returning to China(cx2022016)
文摘This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.
文摘Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.
基金supported by The Special Fund for Basic Scientific Research for Liaoning Provincial Governed Universities(2024JBZDZ004)Fishery Central Financial Support Project of Liaoning Province(2023)+5 种基金Liaoning Province Key Research and Development Plan(2023JH26/10200015)Natural Science Foundation of Liaoning Province(2020-KF-12-09)The Liaoning Provincial Education Commission Fund(LJKZ0730,QL202016)Applied Basic Research Project of Science and Technology Commission of Liaoning Province(2022JH2/101300187)Open Fund of Key Laboratory of Environmental Control Aquaculture of Ministry of Education(Dalian Ocean University)(202219)Liaoning Province Science and Technology Plan Joint Program(2024JH2/102600083).
文摘Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62473135 and 62173121)。
文摘This paper investigates the observer-based prescribed-time time-varying output formation-containment(PT-TV-OFC)control problem for heterogeneous multi-agent systems in which the different agents have different state dimensions.The system comprises one tracking leader,multiple formation leaders,and followers,where two types of leaders are used to generate a reference trajectory for movement and achieve specific formation,respectively.Firstly,a prescribed-time dynamics observer is constructed for the formation leaders to estimate the tracking leader's dynamic model and state.On this basis,a prescribed-time control protocol is designed for the formation leaders to achieve time-varying output formation.Then,a prescribed-time convex hull observer is designed for the followers to estimate information regarding the convex hull formed by the formation leaders.Using the estimated convex hull information,a prescribed-time containment control protocol is designed to ensure the followers converge into the convex hull.Furthermore,using Lyapunov stability theory,the stability of systems is proved in detail,which implies that the heterogeneous multi-agent systems can achieve PT-TV-OFC control.Finally,numerical simulations validate the feasibility of the theoretical results.
基金supported in part by the National Natural Science Foundation of China(61991404,62473089)the Research Program of the Liaoning Liaohe Laboratory(LLL23ZZ-05-01)+6 种基金the Key Research and Development Program of Liaoning Province of China(2023JH26/10200011)the 111 Project 2.0 of China(B08015)the National Key Research and Development Program of China(2022YFB3305905)the Xingliao Talent Program of Liaoning Province of China(XLYC2203130)the Natural Science Foundation of Liaoning Province of China(2024JH3/10200012,2023-MS-087)the Open Research Project of the State Key Laboratory of Industrial Control Technology of China(ICT2024B12)the Fundamental Research Funds for the Central Universities of China(N2108003,N2424004).
文摘The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the online estimation algorithm,the sliding mode method and the Nussbaum gain technique,a group of orientation functions are employed to handlethe unknown sign-switching virtual control coefficients.The controllaw is combined with the orientation functions and the barrierfunctions lumped in a recursive manner.It achieves outputtracking with the preassigned rate,overshoot,and accuracy.Incontrast with the existing solutions,it is effective for the nearlymodel-free case,with the requirement for information of neitherthe system nonlinearities nor their bounding functions of theplant,nor the bounds of the disturbances.In addition,our controllerexhibits significant simplicity,without parameter identification,disturbance estimation,function approximation,derivativecalculation,dynamic surfaces,or command filtering.Twosimulation examples are conducted to substantiate the efficacyand advantages of our approach.
基金supported by the National Natural Science Foundation of China(Nos.U2013206,52425212)the National Key Research and Development Program of China(No.2021YFA0717100)。
文摘A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited by the contact process,bringing detrimental effects for the accurate and safe operations.Besides,the contact-induced strong disturbance makes most of the existing controllers difficult to achieve guaranteed transient and steady-state performances.To conquer the above problems,a novel Nonlinear Energy Sink with Active Varying Stiffness(NES-AVS)device is proposed to significantly reduce the vibrations,wherein the AVS is realized by a small steel plate with the compression force adjusted by a piezoelectric actuator.Moreover,a composite prescribed performance detumbling controller is designed based on the fast non-singular terminal sliding mode control technique.A performance function is adopted to constrain the tracking errors to meet the prescribed dynamic properties,and an adaptive law is incorporated into the control framework to effectively reject the disturbance.Extensive simulations are conducted to demonstrate the effectiveness of the proposed NES-AVS device and controller.
基金supported in part by the National Natural Science Foundation of China under Project No.52207043。
文摘Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.
文摘A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.
文摘This paper focuses on the key role and practical paths of operating room nurses in infection control,and studies the difficult problems in the prevention and control of surgical site infections.Analyze the infection risk links in the operating room and the core responsibilities of nurses,reveal the multiple role mechanisms of nurses in infection control,design practical strategies from dimensions such as process optimization,skill improvement,and monitoring feedback,and construct an infection control system involving all staff.Research shows that operating room nurses can effectively reduce the risk of infection,improve medical quality,provide core guarantees for patient safety,and promote the transformation of operating room infection control towards refined management through practical actions such as standardized operation execution,real-time risk monitoring,and team collaboration supervision.
基金co-supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF21-BJ-J-1180)。
文摘This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.
基金funded by the National Natural Science Foundation of China(Nos.62173022,61673042)the Academic Excellence Foundation of Beihang University for Ph.D.Studentsthe Outstanding Research Project of Shen Yuan Honors College,Beihang University,China(No.230123104)。
文摘This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport aircraft,and different initial deviations.First,a novelcontrol-oriented Six-Degree-Of-Freedom(6-DOF)UAV model considering airflow disturbancesis established for better consistency with the actual UAV system.Then,to achieve satisfactory per-formance in the approaching process,a Flexible Appointed-time Prescribed Performance Control(FAPPC)algorithm,with the features of user-specified time convergence,no overshoot,indepen-dence from the initial value,and singularity-free,is proposed.Specifically,to solve the singularityissue encountered by the existing PPC methods in dealing with sudden disturbances,an adaptiveadjustment signal is introduced in FAPPC to perceive the threat of increasing error and relax thepreset boundaries appropriately.Moreover,minimum learning parameter-based neural networkestimators are developed to approximate unknown lumped disturbances at a low computationalcost.Finally,the stability of the closed system is analyzed via Lyapunov synthesis,and the effective-ness and advantages of the proposed control scheme are demonstrated via simulation andHardware-In-the-Loop(HIL)experimental validation.
文摘As the cornerstone of sterile instrument maintenance in endoscopy centers,the quality of endoscope cleaning directly impacts hospital infection control effectiveness.The traceability system for endoscopy centers utilizes digital means to document the entire cleaning process,enabling real-time monitoring and precise quality control.This paper analyzes current quality control practices in endoscope cleaning and addresses existing challenges.It explores how traceability systems standardize procedures,enhance monitoring,and improve management efficiency.The study proposes optimization strategies for traceability system implementation,clarifying its core value in endoscope cleaning quality control.These findings provide theoretical foundations and practical guidance for hospitals to refine management of endoscopy centers,ensure diagnostic safety,and reduce infection risks,ultimately advancing endoscope cleaning quality control toward standardized and informatized development.