The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us...Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of th...The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses ...The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.展开更多
Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systemat...Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systematic review and meta-analysis examined the effect of HP treatment on clinical and laboratory parameters in NAFLD patients.Methods We conducted a literature search of the PubMed,Embase,Scopus,and Web of Science databases through Septem-ber 2023 for randomized controlled trials(RCTs)examining the effect of HP treatment on NAFLD patients versus lifestyle changes alone.The primary outcome was the change in steatosis parameters.The secondary endpoints were changes in anthropometric parameters,inflammatory markers(TNF-α),and metabolic parameters(fasting blood glucose,homeostasis model assessment of insulin resistance,AST/ALT,and lipid profile).The random effects model was used to calculate the standardized mean difference(SMD)with associated 95%confidence intervals(CIs)for our desired outcome.Results Four RCTs met our inclusion criteria.A total of 453 patients were included(mean age 42.8 years,58.5%males),228(50.3%)of whom were in the HP eradication group and 225(49.7%)of whom were in the lifestyle modification group.Compared with lifestyle modification alone,HP eradication had a significant effect on reducing liver steatosis and TNF-αlevels(SMD:-0.9;95%CI-14.67,-3.82,I^(2)=0%and SMD:-6.3;95%CI-9.04,-3.56,I^(2)=0%,respectively).No sig-nificant effect on other metabolic parameters was found.Conclusions HP eradication significantly reduced liver steatosis and TNF-αlevels in NAFLD patients.However,HP eradi-cation did not significantly affect other metabolic indices compared to lifestyle changes alone.展开更多
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle acc...It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.展开更多
It is particularly challenging to develop a new control theory like human intelligence,as human cognition and decisionmaking are variable in changing environments.In this article,the idea of variable stability is adop...It is particularly challenging to develop a new control theory like human intelligence,as human cognition and decisionmaking are variable in changing environments.In this article,the idea of variable stability is adopted to design a human-like control algorithm,referred to as variable stability control.A variable model perturbation put into the system dynamics model is computed by model game control,which simulates changes in human cognition.Lyapunov stability control is employed to formulate a backstepping control law that mimics the underlying logic algorithm in human decision-making.Some variable algorithm parameters embedded into the control law are calculated using model predictive control,which imitates dynamic tuning in human decision-making.From another perspective,variable stability control is an algorithm-hybrid control approach validated in a steer-by-wire system for angle tracking.According to the experimental results,variable stability control is a promising candidate for angle tracking in steer-by-wire systems.展开更多
The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the...The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous sta...Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.展开更多
With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equ...With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.展开更多
This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and no...This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.展开更多
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u...The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.展开更多
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s...This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.展开更多
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金supported in part by the National Natural Science Foundation of China(61873348,6230 3266,62273200)JSPS(Japan Society for the Promotion of Science) KAKENHI(22H03998,23K25252)
文摘Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金Supported by the National Key R&D Program of China(2021YFB2011300)the National Natural Science Foundation of China(52275044,52205299)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(Z23E050032)the China Postdoctoral Science Foundation(2022M710304).
文摘The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the Special Funds Project for the Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2023039)+1 种基金the National Natural Science Foundation of China(No.52075262)the Fundamental Research Funds for the Central Universities,China(No.30922010706).
文摘The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.
文摘Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systematic review and meta-analysis examined the effect of HP treatment on clinical and laboratory parameters in NAFLD patients.Methods We conducted a literature search of the PubMed,Embase,Scopus,and Web of Science databases through Septem-ber 2023 for randomized controlled trials(RCTs)examining the effect of HP treatment on NAFLD patients versus lifestyle changes alone.The primary outcome was the change in steatosis parameters.The secondary endpoints were changes in anthropometric parameters,inflammatory markers(TNF-α),and metabolic parameters(fasting blood glucose,homeostasis model assessment of insulin resistance,AST/ALT,and lipid profile).The random effects model was used to calculate the standardized mean difference(SMD)with associated 95%confidence intervals(CIs)for our desired outcome.Results Four RCTs met our inclusion criteria.A total of 453 patients were included(mean age 42.8 years,58.5%males),228(50.3%)of whom were in the HP eradication group and 225(49.7%)of whom were in the lifestyle modification group.Compared with lifestyle modification alone,HP eradication had a significant effect on reducing liver steatosis and TNF-αlevels(SMD:-0.9;95%CI-14.67,-3.82,I^(2)=0%and SMD:-6.3;95%CI-9.04,-3.56,I^(2)=0%,respectively).No sig-nificant effect on other metabolic parameters was found.Conclusions HP eradication significantly reduced liver steatosis and TNF-αlevels in NAFLD patients.However,HP eradi-cation did not significantly affect other metabolic indices compared to lifestyle changes alone.
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
文摘It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.
文摘It is particularly challenging to develop a new control theory like human intelligence,as human cognition and decisionmaking are variable in changing environments.In this article,the idea of variable stability is adopted to design a human-like control algorithm,referred to as variable stability control.A variable model perturbation put into the system dynamics model is computed by model game control,which simulates changes in human cognition.Lyapunov stability control is employed to formulate a backstepping control law that mimics the underlying logic algorithm in human decision-making.Some variable algorithm parameters embedded into the control law are calculated using model predictive control,which imitates dynamic tuning in human decision-making.From another perspective,variable stability control is an algorithm-hybrid control approach validated in a steer-by-wire system for angle tracking.According to the experimental results,variable stability control is a promising candidate for angle tracking in steer-by-wire systems.
基金Supported by the Guiding Project of Science and Technology Research Plan of Hubei Provincial Department of Education(B2022458)。
文摘The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金supported by the National Natural Science Foundation of China(62403393,12202058,62103118)the China Postdoctoral Science Foundation(2021T140160,2023 T160051)the Natural Science Foundation of Chongqing(CSTB 2023NSCQ-MSX0152)
文摘Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072072,52025121,52394263).
文摘With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61991400/61991403,61933012,62250710167,62203078)+2 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Central University Project(2023CDJKYJH047)the Innovation Support Program for International Students Returning to China(cx2022016)
文摘This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.
文摘The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme.
基金supported in part by the National Key Research and Development Program of China(2021YFE0206100)the National Natural Science Foundation of China(62425310,62073321)+2 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029,JCKY2020130C025)the Science and Technology Development FundMacao SAR(FDCT-22-009-MISE,0060/2021/A2,0015/2020/AMJ)
文摘This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.