Tooth bending damage resulting from an intense impact by the rotor sometimes occurs in the transient operation.To investigate the influence of after-damage clearance and tooth bending length on the leakage performance...Tooth bending damage resulting from an intense impact by the rotor sometimes occurs in the transient operation.To investigate the influence of after-damage clearance and tooth bending length on the leakage performance and rotordynamic coefficients of labyrinth seals,three tooth bending damages were taken into consideration,including the unbent tooth damage(abbreviated as Unbent),the partial tooth bending damage(abbreviated as Pbent)and the complete tooth bending damage(abbreviated as Cbent).The transient CFD solution was utilized to calculate the leakage flow rates and rotordynamic coefficients of labyrinth seals with clearances of 0.3,0.4,0.5,0.6 mm for three tooth bending damages.The obtained result shows that the Unbent tooth damage leaks least while the Pbent tooth bending damage leaks most,and an increase of 6.1%for Cbent tooth bending damage and an increase of 19.4%for Pbent tooth bending damage are discovered at the tooth clearance of 0.6 mm in comparison with the Unbent tooth damage.Compared to the Unbent tooth damage,the effective damping for Pbent tooth bending damage and Cbent tooth bending damage is lower and drops by 9.7%–33.6%and 8.5%–22.6%respectively at the tooth clearance of 0.6 mm,suggesting that Pbent tooth bending damage or Cbent tooth bending damage tends to weaken the seal stability when compared to the Unbent tooth damage.展开更多
Poppet valves have become increasingly significant in ensuring precise digital flow rate and pressure control in hydraulic systems,necessitating a more profound understanding of the geometrical properties of cavitatio...Poppet valves have become increasingly significant in ensuring precise digital flow rate and pressure control in hydraulic systems,necessitating a more profound understanding of the geometrical properties of cavitation in them,as well as associated flow-choking conditions.Through a comparative analysis with experimentally observed cavity images,we found that large eddy simulation(LES)turbulence modeling effectively replicates the geometrical properties of cavitation in these valves.The analysis demonstrated that cavitation is generated from vortices that result from the interaction between the notch contracta flow and the surrounding fluid structure.Variations in the internal or external vena contracta conditions result in fixed or discrete cavities,and the length-to-diameter ratio serves as a measure of the transition between internal and external vena contracta flow properties.This study establishes a threshold length-to-diameter ratio of approximately 2 for the tested poppet valves.More specifically,in notch structures with a smaller valve opening,longer sealing length,and smaller throttling angle(corresponding to a larger length-to-diameter ratio),the liquid-to-vapor transfer process is more evident than that in the reverse direction.A long-standing vapor cavity becomes fixed inside the notch,leading to a more pronounced flow-choking phenomenon.In contrast,for structures with a smaller length-to-diameter ratio,the cavitation process for discrete vapor cavities is more complete,ensuring fluid flow continuity and significantly reducing the occurrence of the flow-choking phenomenon.展开更多
基金funded by the National Key R&D Program of China(No.2017YFB0601804)the National Natural Science Foundation of China(No.51776152)。
文摘Tooth bending damage resulting from an intense impact by the rotor sometimes occurs in the transient operation.To investigate the influence of after-damage clearance and tooth bending length on the leakage performance and rotordynamic coefficients of labyrinth seals,three tooth bending damages were taken into consideration,including the unbent tooth damage(abbreviated as Unbent),the partial tooth bending damage(abbreviated as Pbent)and the complete tooth bending damage(abbreviated as Cbent).The transient CFD solution was utilized to calculate the leakage flow rates and rotordynamic coefficients of labyrinth seals with clearances of 0.3,0.4,0.5,0.6 mm for three tooth bending damages.The obtained result shows that the Unbent tooth damage leaks least while the Pbent tooth bending damage leaks most,and an increase of 6.1%for Cbent tooth bending damage and an increase of 19.4%for Pbent tooth bending damage are discovered at the tooth clearance of 0.6 mm in comparison with the Unbent tooth damage.Compared to the Unbent tooth damage,the effective damping for Pbent tooth bending damage and Cbent tooth bending damage is lower and drops by 9.7%–33.6%and 8.5%–22.6%respectively at the tooth clearance of 0.6 mm,suggesting that Pbent tooth bending damage or Cbent tooth bending damage tends to weaken the seal stability when compared to the Unbent tooth damage.
基金supported by the National Natural Science Foundation of China(Nos.52075387 and 52375060)the Shanghai Natural Science Foundation of China(No.22ZR1464400)+2 种基金the National Key R&D Program of China(No.2019YFB2005102)the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the Fundamental Research Funds for the Central Universities(No.2022-1-ZD-04),China.
文摘Poppet valves have become increasingly significant in ensuring precise digital flow rate and pressure control in hydraulic systems,necessitating a more profound understanding of the geometrical properties of cavitation in them,as well as associated flow-choking conditions.Through a comparative analysis with experimentally observed cavity images,we found that large eddy simulation(LES)turbulence modeling effectively replicates the geometrical properties of cavitation in these valves.The analysis demonstrated that cavitation is generated from vortices that result from the interaction between the notch contracta flow and the surrounding fluid structure.Variations in the internal or external vena contracta conditions result in fixed or discrete cavities,and the length-to-diameter ratio serves as a measure of the transition between internal and external vena contracta flow properties.This study establishes a threshold length-to-diameter ratio of approximately 2 for the tested poppet valves.More specifically,in notch structures with a smaller valve opening,longer sealing length,and smaller throttling angle(corresponding to a larger length-to-diameter ratio),the liquid-to-vapor transfer process is more evident than that in the reverse direction.A long-standing vapor cavity becomes fixed inside the notch,leading to a more pronounced flow-choking phenomenon.In contrast,for structures with a smaller length-to-diameter ratio,the cavitation process for discrete vapor cavities is more complete,ensuring fluid flow continuity and significantly reducing the occurrence of the flow-choking phenomenon.