This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. ...A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.展开更多
Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp...Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.展开更多
BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for ...BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.展开更多
Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enh...Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.展开更多
Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN model...Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN models—DenseNet201,VGG16,InceptionV3,ResNet50,VGG19,MobileNetV2,Xception,and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance.The models were trained and tested on NUAA and Replay-Attack datasets,with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability.Performance was evaluated using accuracy,precision,recall,FAR,FRR,HTER,and specialized spoof detection metrics(APCER,NPCER,ACER).Fine-tuning significantly improved detection accuracy,with DenseNet201 achieving the highest performance(98.5%on NUAA,97.71%on Replay-Attack),while MobileNetV2 proved the most efficient model for real-time applications(latency:15 ms,memory usage:45 MB,energy consumption:30 mJ).A statistical significance analysis(paired t-tests,confidence intervals)validated these improvements.Cross-dataset experiments identified DenseNet201 and MobileNetV2 as the most generalizable architectures,with DenseNet201 achieving 86.4%accuracy on Replay-Attack when trained on NUAA,demonstrating robust feature extraction and adaptability.In contrast,ResNet50 showed lower generalization capabilities,struggling with dataset variability and complex spoofing attacks.These findings suggest that MobileNetV2 is well-suited for low-power applications,while DenseNet201 is ideal for high-security environments requiring superior accuracy.This research provides a framework for improving real-time face liveness detection,enhancing biometric security,and guiding future advancements in AI-driven anti-spoofing techniques.展开更多
Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenanc...Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenance of children and adolescents on antiretroviral therapy in the continuum of care. Methodology: This was a descriptive and analytical cross-sectional study conducted from August 1 to August 31, 2023. It included all children living with HIV, under 15 years of age, with at least two viral load results and whose parents consented to participate in the study. Participants were recruited during their child’s treatment renewal consultations. Results: The study included 143 children, mostly boys (55.2%), with a mean age of 11.54 years (±2.8). More than half (55.2) were unaware of their HIV-positive status, and most treatments were administered by parents (60.8%). Of the 99 children with an undetectable viral load at the first test, 23 (23.2%) showed a viral rebound at the last test, mainly due to poor treatment compliance (p Conclusion: Virological rebound after suppression in children is worrying. It is crucial that the national AIDS program improves Therapeutic Education, trains health workers to communicate results and encourages ongoing dialogue with young people to reinforce adherence and maintain viral suppression.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This p...A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.展开更多
Local precise drug delivery is conducive to improving therapeutic efficacy and minimizing off-target toxicity.Current local delivery approaches are focused mostly on superficial or postoperative tumor lesions,due to t...Local precise drug delivery is conducive to improving therapeutic efficacy and minimizing off-target toxicity.Current local delivery approaches are focused mostly on superficial or postoperative tumor lesions,due to the challenges posed by the inaccessibility of deep-seated tumors.Herein,we report a magnetic continuum soft robot capable of non-invasive and site-specific delivery of prodrug nanoassemblies-loaded hydrogel.The nanoassemblies are co-assembled from redox-responsive docetaxel prodrug and oxaliplatin prodrug,and subsequently embedded into a hydrogel matrix.The hydrogel precursor and crosslinker are synchronously delivered using the soft robot under magnetic guidance and in situ crosslinked at the gastric cancer lesions,forming a drug depot for sustained release and long-lasting treatment.As the hydrogel gradually degrades,the nanoassemblies are internalized by tumor cells.The redox response ability enables them to be selectively activatedwithin tumor cells to trigger the release of docetaxel and oxaliplatin,exerting a synergistic anti-tumor effect.We find that the combination effectively induces immunogenic cell death of gastric tumor,enhancing antitumor immune responses.This strategy offers an intelligent and controllable integration platform for precise drug delivery and combined chemo-immunotherapy.展开更多
This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its stre...This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.展开更多
The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for a...The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for applications such as search and rescue,are scarcely available.This paper presents a novel helical-coiled multi-segment flexible continuum robot featuring helical deployment and compact design,with an integrated framework for structural design,kinematic modeling,and experimental validation.The design of the helical-coiled multi-segment flexible continuum robot for unstructured environment detection,including a flexible body,an actuation module,a feed module,and a sensing module,is presented systematically.Kinematic models of both single-and multisegment continuum robots were established based on the constant curvature model to analyze the parameter mapping relationship from the end-effector position and orientation to the driving inputs.Furthermore,the feedforward motion of the robot was examined,and an uncoiling strategy based on S-curve compensation was employed to complete the kinematic analysis.Finally,the accuracy of the kinematic model considering the active uncoiling feed motion was validated through experimental analysis,demonstrating the motion characteristics of the continuum robot.Altogether,this study provides a framework for the design and analysis of helical-coiled continuum robots.展开更多
The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in...The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.展开更多
The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were ob...The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were observed simultaneously near the magnetic equator by the Van Allen Probes.We identify the radio window(the region for mode conversion taking place)at L=4.059 by solving the fully-thermal dispersion relation.Ray tracing simulations show that the backward-propagating electrostatic mode can smoothly transition to Z-mode.Then,Z-mode can convert to KC when its direction shifts to parallel or anti-parallel propagation at the radio window,which aligns with observations.This study provides direct evidence that supports the linear mode conversion theory as an effective mechanism for KC generation.展开更多
Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox i...Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox in river–estuary continuum is limited.In this study,stable isotope tracers and high-throughput amplicon sequencing were employed to determine Feammox rates and identify associated microbial communities in sediments along the Yangtze river–estuary continuum.Feammox rates averaged 0.0058±0.0069 mg N/(kg·d)and accounted for approximately 22.3%of the ammonium removed from the sediments.Sediment Fe(III),ammonium(NH_(4)^(+)),total organic carbon(TOC),and pH were identified as important factors influencing Feammox rates.Additionally,Spirochaeta,Caldilineaceae_uncultured,and Ignavibacterium were found potentially associated with Feammox,which had not been documented as Feammox-associated microbial taxa previously.This study demonstrates that Feammox plays a vital role in ammonium removal within the Yangtze river–estuary continuum,providing greater insight into nitrogen removal and cycling in aquatic ecosystems.展开更多
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ...In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.展开更多
Strengthening cybersecurity education for college students holds significant importance in achieving the strategic goal of building China into a cyber power.This article begins by discussing the significance and neces...Strengthening cybersecurity education for college students holds significant importance in achieving the strategic goal of building China into a cyber power.This article begins by discussing the significance and necessity of implementing cybersecurity education for university students.Drawing on disciplinary characteristics and student learning analysis,it presents a comprehensive construction process and countermeasures for a general cybersecurity education course,covering aspects such as teaching content development,teaching resource creation,and pedagogical approaches.The aim is to provide reference and guidance for other universities in developing general cybersecurity education courses.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
Compared with conventional rigid-link robots,bionic continuum robots(CRs)show great potential in unstructured environments because of their adaptivity and continuous deformation ability.However,designing a CR to achie...Compared with conventional rigid-link robots,bionic continuum robots(CRs)show great potential in unstructured environments because of their adaptivity and continuous deformation ability.However,designing a CR to achieve miniaturization,variable length and compliant driving force remains a challenge.Here,inspired by the earthworm in nature,we report a length-variable bionic CR with millimeter-scale diameter and compliant driving force.The CR consists of two main components:the robot body and soft drives.The robot body is only 6 mm in diameter,and is composed of a backbone and transmission devices.The backbone is divided into three segments,and each segment is capable of adjusting its length and bending like the earthworm.The maximum length variation of the backbone can reach an astonishing 70 mm with a backbone’s initial length of 150 mm,and the maximum bending angle of each segment can reach 120 degrees.In addition,we develop soft drives using pneumatic soft actuators(PSAs)as a replacement for the rigid motors typically used in conventional CRs.These soft drives control the motions of the transmission devices,enabling length variation and bending of the backbone.By utilizing these soft drives,we ensure that the robot body has a compliant driving force,which addresses users’concerns about human safety during interactions.In practical applications,we prove that this CR can perform delicate manipulations by successfully completing writing tasks.Additionally,we show its application value for detections and medical treatments by entering the narrow tube and the oral.展开更多
The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurr...The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurrence of a traumatic event[1].Fear generalization within the normal range represents an adaptive evolutionary mechanism to facilitate prompt reactions to potential threats and to enhance the likelihood of survival.展开更多
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
文摘A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.
基金Supported by National Natural Science Foundation of China(Grant No.51875033)Fundamental Research Funds for the Central Universities of China(Grant No.2021YJS137).
文摘Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
文摘BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.
文摘Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.
基金funded by Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology Sydney.Moreover,Ongoing Research Funding Program(ORF-2025-14)King Saud University,Riyadh,Saudi Arabia,under Project ORF-2025-。
文摘Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN models—DenseNet201,VGG16,InceptionV3,ResNet50,VGG19,MobileNetV2,Xception,and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance.The models were trained and tested on NUAA and Replay-Attack datasets,with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability.Performance was evaluated using accuracy,precision,recall,FAR,FRR,HTER,and specialized spoof detection metrics(APCER,NPCER,ACER).Fine-tuning significantly improved detection accuracy,with DenseNet201 achieving the highest performance(98.5%on NUAA,97.71%on Replay-Attack),while MobileNetV2 proved the most efficient model for real-time applications(latency:15 ms,memory usage:45 MB,energy consumption:30 mJ).A statistical significance analysis(paired t-tests,confidence intervals)validated these improvements.Cross-dataset experiments identified DenseNet201 and MobileNetV2 as the most generalizable architectures,with DenseNet201 achieving 86.4%accuracy on Replay-Attack when trained on NUAA,demonstrating robust feature extraction and adaptability.In contrast,ResNet50 showed lower generalization capabilities,struggling with dataset variability and complex spoofing attacks.These findings suggest that MobileNetV2 is well-suited for low-power applications,while DenseNet201 is ideal for high-security environments requiring superior accuracy.This research provides a framework for improving real-time face liveness detection,enhancing biometric security,and guiding future advancements in AI-driven anti-spoofing techniques.
文摘Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenance of children and adolescents on antiretroviral therapy in the continuum of care. Methodology: This was a descriptive and analytical cross-sectional study conducted from August 1 to August 31, 2023. It included all children living with HIV, under 15 years of age, with at least two viral load results and whose parents consented to participate in the study. Participants were recruited during their child’s treatment renewal consultations. Results: The study included 143 children, mostly boys (55.2%), with a mean age of 11.54 years (±2.8). More than half (55.2) were unaware of their HIV-positive status, and most treatments were administered by parents (60.8%). Of the 99 children with an undetectable viral load at the first test, 23 (23.2%) showed a viral rebound at the last test, mainly due to poor treatment compliance (p Conclusion: Virological rebound after suppression in children is worrying. It is crucial that the national AIDS program improves Therapeutic Education, trains health workers to communicate results and encourages ongoing dialogue with young people to reinforce adherence and maintain viral suppression.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
文摘A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.
基金supported by National Natural Science Foundation of China(No.82161138029)Liaoning Revitalization Talents Program(No.XLYC2402040)the Project of China-Japan Joint International Laboratory of Advanced Drug Delivery System Research and Translation of Liaoning Province(No.2024JH2/102100007).
文摘Local precise drug delivery is conducive to improving therapeutic efficacy and minimizing off-target toxicity.Current local delivery approaches are focused mostly on superficial or postoperative tumor lesions,due to the challenges posed by the inaccessibility of deep-seated tumors.Herein,we report a magnetic continuum soft robot capable of non-invasive and site-specific delivery of prodrug nanoassemblies-loaded hydrogel.The nanoassemblies are co-assembled from redox-responsive docetaxel prodrug and oxaliplatin prodrug,and subsequently embedded into a hydrogel matrix.The hydrogel precursor and crosslinker are synchronously delivered using the soft robot under magnetic guidance and in situ crosslinked at the gastric cancer lesions,forming a drug depot for sustained release and long-lasting treatment.As the hydrogel gradually degrades,the nanoassemblies are internalized by tumor cells.The redox response ability enables them to be selectively activatedwithin tumor cells to trigger the release of docetaxel and oxaliplatin,exerting a synergistic anti-tumor effect.We find that the combination effectively induces immunogenic cell death of gastric tumor,enhancing antitumor immune responses.This strategy offers an intelligent and controllable integration platform for precise drug delivery and combined chemo-immunotherapy.
基金supported by the National Key R&D Program of China(No.2018YFB1305400)the Major Research Plan of the National Natural Science Foundation of China(No.92048301)+1 种基金the National Natural Science Foundation of China(No.52025054)the Joint Research Fund between the National Natural Science Foundation of China(NSFC)and Shen Zhen(No.U1713201).
文摘This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.
基金Supported by National Natural Science Foundation of China(Grant Nos.52305003,52175019)National Key R&D Program of China(Grant No.2023YFD2001100)+2 种基金Beijing Natural Science Foundation(Grant No.L222038)Beijing Nova Programme Interdisciplinary Cooperation Project(Grant No.20240484699)Project“Vice President of Science and Technology”of Changping District of Beijing.
文摘The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for applications such as search and rescue,are scarcely available.This paper presents a novel helical-coiled multi-segment flexible continuum robot featuring helical deployment and compact design,with an integrated framework for structural design,kinematic modeling,and experimental validation.The design of the helical-coiled multi-segment flexible continuum robot for unstructured environment detection,including a flexible body,an actuation module,a feed module,and a sensing module,is presented systematically.Kinematic models of both single-and multisegment continuum robots were established based on the constant curvature model to analyze the parameter mapping relationship from the end-effector position and orientation to the driving inputs.Furthermore,the feedforward motion of the robot was examined,and an uncoiling strategy based on S-curve compensation was employed to complete the kinematic analysis.Finally,the accuracy of the kinematic model considering the active uncoiling feed motion was validated through experimental analysis,demonstrating the motion characteristics of the continuum robot.Altogether,this study provides a framework for the design and analysis of helical-coiled continuum robots.
文摘The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.
基金supported by the National Natural Science Foundation of China grants 42074198,42230209 and 42374215the Scientific Research Fund of Hunan Provincial Education Department Grants 21A0212,Post-graduate Scientific Research Innovation Project of Hunan Province CX20240804.
文摘The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were observed simultaneously near the magnetic equator by the Van Allen Probes.We identify the radio window(the region for mode conversion taking place)at L=4.059 by solving the fully-thermal dispersion relation.Ray tracing simulations show that the backward-propagating electrostatic mode can smoothly transition to Z-mode.Then,Z-mode can convert to KC when its direction shifts to parallel or anti-parallel propagation at the radio window,which aligns with observations.This study provides direct evidence that supports the linear mode conversion theory as an effective mechanism for KC generation.
基金supported by the National Natural Science Foundation of China(Nos.U2040201,32201334,92251304,and 42271126),the Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou,No.GML20220017),the Outstanding Postdoctoral Project in Jiangsu Province(No.2022ZB455),the Chinese Postdoctoral Science Foundation(No.2022M721661)and the Project of State Key Laboratory of Lake Science and Environment(No.2022SKL019).
文摘Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox in river–estuary continuum is limited.In this study,stable isotope tracers and high-throughput amplicon sequencing were employed to determine Feammox rates and identify associated microbial communities in sediments along the Yangtze river–estuary continuum.Feammox rates averaged 0.0058±0.0069 mg N/(kg·d)and accounted for approximately 22.3%of the ammonium removed from the sediments.Sediment Fe(III),ammonium(NH_(4)^(+)),total organic carbon(TOC),and pH were identified as important factors influencing Feammox rates.Additionally,Spirochaeta,Caldilineaceae_uncultured,and Ignavibacterium were found potentially associated with Feammox,which had not been documented as Feammox-associated microbial taxa previously.This study demonstrates that Feammox plays a vital role in ammonium removal within the Yangtze river–estuary continuum,providing greater insight into nitrogen removal and cycling in aquatic ecosystems.
基金supported by the National Natural Science Foundation of China(No.12005198).
文摘In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.
基金supported in part by the 2024 Core General Education Course Construction Project of Beijing Union University,titled“Cybersecurity:Exploring the World of White Hat Hackers”the 2025 Educational Science Research Project of Beijing Union University(JK202514)+1 种基金the General Project of Science and Technology Program of Beijing Municipal Education Commission under Grant KM201911417011the Academic Research Projects of Beijing Union University(ZK30202407).
文摘Strengthening cybersecurity education for college students holds significant importance in achieving the strategic goal of building China into a cyber power.This article begins by discussing the significance and necessity of implementing cybersecurity education for university students.Drawing on disciplinary characteristics and student learning analysis,it presents a comprehensive construction process and countermeasures for a general cybersecurity education course,covering aspects such as teaching content development,teaching resource creation,and pedagogical approaches.The aim is to provide reference and guidance for other universities in developing general cybersecurity education courses.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
基金supported by the Young Scientists Fund of National Natural Science Foundation of China(62203408)the China Postdoctoral Science Foundation(2023M733307),the Hubei Provincial Natural Science Foundation of China(2015CFA010)+1 种基金the 111 Project(B17040)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(2022088)。
文摘Compared with conventional rigid-link robots,bionic continuum robots(CRs)show great potential in unstructured environments because of their adaptivity and continuous deformation ability.However,designing a CR to achieve miniaturization,variable length and compliant driving force remains a challenge.Here,inspired by the earthworm in nature,we report a length-variable bionic CR with millimeter-scale diameter and compliant driving force.The CR consists of two main components:the robot body and soft drives.The robot body is only 6 mm in diameter,and is composed of a backbone and transmission devices.The backbone is divided into three segments,and each segment is capable of adjusting its length and bending like the earthworm.The maximum length variation of the backbone can reach an astonishing 70 mm with a backbone’s initial length of 150 mm,and the maximum bending angle of each segment can reach 120 degrees.In addition,we develop soft drives using pneumatic soft actuators(PSAs)as a replacement for the rigid motors typically used in conventional CRs.These soft drives control the motions of the transmission devices,enabling length variation and bending of the backbone.By utilizing these soft drives,we ensure that the robot body has a compliant driving force,which addresses users’concerns about human safety during interactions.In practical applications,we prove that this CR can perform delicate manipulations by successfully completing writing tasks.Additionally,we show its application value for detections and medical treatments by entering the narrow tube and the oral.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2022QH144).
文摘The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurrence of a traumatic event[1].Fear generalization within the normal range represents an adaptive evolutionary mechanism to facilitate prompt reactions to potential threats and to enhance the likelihood of survival.