BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for ...BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.展开更多
Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enh...Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.展开更多
Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN model...Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN models—DenseNet201,VGG16,InceptionV3,ResNet50,VGG19,MobileNetV2,Xception,and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance.The models were trained and tested on NUAA and Replay-Attack datasets,with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability.Performance was evaluated using accuracy,precision,recall,FAR,FRR,HTER,and specialized spoof detection metrics(APCER,NPCER,ACER).Fine-tuning significantly improved detection accuracy,with DenseNet201 achieving the highest performance(98.5%on NUAA,97.71%on Replay-Attack),while MobileNetV2 proved the most efficient model for real-time applications(latency:15 ms,memory usage:45 MB,energy consumption:30 mJ).A statistical significance analysis(paired t-tests,confidence intervals)validated these improvements.Cross-dataset experiments identified DenseNet201 and MobileNetV2 as the most generalizable architectures,with DenseNet201 achieving 86.4%accuracy on Replay-Attack when trained on NUAA,demonstrating robust feature extraction and adaptability.In contrast,ResNet50 showed lower generalization capabilities,struggling with dataset variability and complex spoofing attacks.These findings suggest that MobileNetV2 is well-suited for low-power applications,while DenseNet201 is ideal for high-security environments requiring superior accuracy.This research provides a framework for improving real-time face liveness detection,enhancing biometric security,and guiding future advancements in AI-driven anti-spoofing techniques.展开更多
Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenanc...Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenance of children and adolescents on antiretroviral therapy in the continuum of care. Methodology: This was a descriptive and analytical cross-sectional study conducted from August 1 to August 31, 2023. It included all children living with HIV, under 15 years of age, with at least two viral load results and whose parents consented to participate in the study. Participants were recruited during their child’s treatment renewal consultations. Results: The study included 143 children, mostly boys (55.2%), with a mean age of 11.54 years (±2.8). More than half (55.2) were unaware of their HIV-positive status, and most treatments were administered by parents (60.8%). Of the 99 children with an undetectable viral load at the first test, 23 (23.2%) showed a viral rebound at the last test, mainly due to poor treatment compliance (p Conclusion: Virological rebound after suppression in children is worrying. It is crucial that the national AIDS program improves Therapeutic Education, trains health workers to communicate results and encourages ongoing dialogue with young people to reinforce adherence and maintain viral suppression.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This p...A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.展开更多
This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its stre...This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.展开更多
The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in...The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.展开更多
The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were ob...The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were observed simultaneously near the magnetic equator by the Van Allen Probes.We identify the radio window(the region for mode conversion taking place)at L=4.059 by solving the fully-thermal dispersion relation.Ray tracing simulations show that the backward-propagating electrostatic mode can smoothly transition to Z-mode.Then,Z-mode can convert to KC when its direction shifts to parallel or anti-parallel propagation at the radio window,which aligns with observations.This study provides direct evidence that supports the linear mode conversion theory as an effective mechanism for KC generation.展开更多
The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for a...The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for applications such as search and rescue,are scarcely available.This paper presents a novel helical-coiled multi-segment flexible continuum robot featuring helical deployment and compact design,with an integrated framework for structural design,kinematic modeling,and experimental validation.The design of the helical-coiled multi-segment flexible continuum robot for unstructured environment detection,including a flexible body,an actuation module,a feed module,and a sensing module,is presented systematically.Kinematic models of both single-and multisegment continuum robots were established based on the constant curvature model to analyze the parameter mapping relationship from the end-effector position and orientation to the driving inputs.Furthermore,the feedforward motion of the robot was examined,and an uncoiling strategy based on S-curve compensation was employed to complete the kinematic analysis.Finally,the accuracy of the kinematic model considering the active uncoiling feed motion was validated through experimental analysis,demonstrating the motion characteristics of the continuum robot.Altogether,this study provides a framework for the design and analysis of helical-coiled continuum robots.展开更多
Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox i...Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox in river–estuary continuum is limited.In this study,stable isotope tracers and high-throughput amplicon sequencing were employed to determine Feammox rates and identify associated microbial communities in sediments along the Yangtze river–estuary continuum.Feammox rates averaged 0.0058±0.0069 mg N/(kg·d)and accounted for approximately 22.3%of the ammonium removed from the sediments.Sediment Fe(III),ammonium(NH_(4)^(+)),total organic carbon(TOC),and pH were identified as important factors influencing Feammox rates.Additionally,Spirochaeta,Caldilineaceae_uncultured,and Ignavibacterium were found potentially associated with Feammox,which had not been documented as Feammox-associated microbial taxa previously.This study demonstrates that Feammox plays a vital role in ammonium removal within the Yangtze river–estuary continuum,providing greater insight into nitrogen removal and cycling in aquatic ecosystems.展开更多
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ...In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
We report the bifurcation of bound states in the continuum(BICs) in a dissipative cavity magnonic system, where a BIC splits into a pair of BICs. We theoretically analyze BICs in a dissipative cavity magnonic system a...We report the bifurcation of bound states in the continuum(BICs) in a dissipative cavity magnonic system, where a BIC splits into a pair of BICs. We theoretically analyze BICs in a dissipative cavity magnonic system and derive the critical condition for BICs bifurcation. Based on the theoretical results, we experimentally tune the dissipative photon–magnon coupling strength and demonstrate precise control over the detuning and number of BICs. When the dissipative coupling strength reaches a critical value, we observe the bifurcation of BICs, which is consistent with the theoretical prediction. Our systematic investigation of the evolution of BICs concerning the dissipative coupling strength and the discovery of the BIC bifurcation may enhance the sensitivity of BICs to external perturbations, potentially enabling applications in ultrasensitive detection.展开更多
Spectral and polarization information are crucial for characterizing the composition and surface morphology of various materials.However,traditional spectral and polarization detection systems are hampered by bulky,si...Spectral and polarization information are crucial for characterizing the composition and surface morphology of various materials.However,traditional spectral and polarization detection systems are hampered by bulky,single-function optical components and complex configurations,hindering the portable,low-cost,and multifunctional applications in compact,field-deployable devices.In this study,we introduce a miniaturized near-infrared(NIR)spectro-polarimetric detection device utilizing a group of meta-spectro-polarimeters(MSPs),which support quasi-bound states in the continuum(QBIC)under specific incident polarization,significantly reducing the spatial footprint and improving the design scalability.By precisely adjusting the high quality resonances and polarization sensitive radiation behavior of MSPs,we not only extend the number of spectral waveband to 20 that greatly surpassing traditional division-of-amplitude or division-of-time schemes,but also ensure an average spectral resolution power(SRP,λ/Δλ)of 71.03.We achieve high accuracy multidimensional spectro-polarization detection,resulting in the angle of linear polarization(AoLP)with an average error of 4.67°and precise spectrum reconstruction in a machine-learning free way,avoiding the huge computational power and energy during the training process.Additionally,we demonstrate the high spectro-polarimetric imaging performance of our system in different experimental scene.Such multidimensional detection device holds great promise for adoption in fields like aerospace,chemical detection,machine vision,and so on.展开更多
The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurr...The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurrence of a traumatic event[1].Fear generalization within the normal range represents an adaptive evolutionary mechanism to facilitate prompt reactions to potential threats and to enhance the likelihood of survival.展开更多
The challenge of enhancing the generalization capacity of reinforcement learning(RL)agents remains a formidable obstacle.Existing RL methods,despite achieving superhuman performance on certain benchmarks,often struggl...The challenge of enhancing the generalization capacity of reinforcement learning(RL)agents remains a formidable obstacle.Existing RL methods,despite achieving superhuman performance on certain benchmarks,often struggle with this aspect.A potential reason is that the benchmarks used for training and evaluation may not adequately offer a diverse set of transferable tasks.Although recent studies have developed bench-marking environments to address this shortcoming,they typically fall short in providing tasks that both ensure a solid foundation for generalization and exhibit significant variability.To overcome these limitations,this work introduces the concept that‘objects are composed of more fundamental components’in environment design,as implemented in the proposed environment called summon the magic(StM).This environment generates tasks where objects are derived from extensible and shareable basic components,facilitating strategy reuse and enhancing generalization.Furthermore,two new metrics,adaptation sensitivity range(ASR)and parameter correlation coefficient(PCC),are proposed to better capture and evaluate the generalization process of RL agents.Experimental results show that increasing the number of basic components of the object reduces the proximal policy optimization(PPO)agent’s training-testing gap by 60.9%(in episode reward),significantly alleviating overfitting.Additionally,linear variations in other environmental factors,such as the training monster set proportion and the total number of basic components,uniformly decrease the gap by at least 32.1%.These results highlight StM’s effectiveness in benchmarking and probing the generalization capabilities of RL algorithms.展开更多
Mingalarpar!On behalf of the Consulate-General of the Republic of the Union of Myanmar in Nanning,I would like to express my sincerest congratulations to CAEXPO on reaching the remarkable milestone of over 20 years—a...Mingalarpar!On behalf of the Consulate-General of the Republic of the Union of Myanmar in Nanning,I would like to express my sincerest congratulations to CAEXPO on reaching the remarkable milestone of over 20 years—an incredible journey filled with numerous achievements.展开更多
BACKGROUND The coronavirus disease 2019(COVID-19)outbreak lasted several months,having started in December 2019.This study aimed to report the impacts of various factors on the depression levels of the general public ...BACKGROUND The coronavirus disease 2019(COVID-19)outbreak lasted several months,having started in December 2019.This study aimed to report the impacts of various factors on the depression levels of the general public and ascertain how emotional measures could be affected by psychosocial factors during the COVID-19 pandemic.AIM To investigate the depression levels of the general public in China during the COVID-19 pandemic.METHODS A total of 2001 self-reported questionnaires about Beck Depression Inventory(BDI)were collected on August 22,2022 via the website.Each questionnaire included four levels of depression and other demographic information.The BDI scores and incidences of different depression levels were compared between various groups of respondents.χ2 analysis and the two-tailed t-test were used to assess categorical and continuous data,respectively.Multiple linear regressions and logistic regressions were employed for correlation analysis.RESULTS The averaged BDI score in this study was higher than that for the non-epidemic periods,as reported in previous studies.Even higher BDI scores and incidences of moderate and severe depression were recorded for people who were quarantined for suspected COVID-19 infection,compared to the respondents who were not quarantined.The participants who did not take protective measures were associated with higher BDI scores than those who made efforts to keep themselves relatively safer.Similarly,the people who did not return to work had higher BDI scores compared to those managed to.A significant association existed between the depression levels of the subgroups and each of the factors,except gender and location of residence.However,quarantine was the most relative predictor for depression levels,followed by failure to take preventive measures and losing a partner,either through divorce or death.CONCLUSION Based on these data,psychological interventions for the various subpopulations in the general public can be implemented during and after the COVID-19 pandemic.Other countries can also use the data as a reference.展开更多
Two types of bound states in continuum(BICs),symmetry-protected and Brillouin zone folding driven,are identified in hollow Si nanorod arrays.By modulating the direction and distance of the air holes from the center of...Two types of bound states in continuum(BICs),symmetry-protected and Brillouin zone folding driven,are identified in hollow Si nanorod arrays.By modulating the direction and distance of the air holes from the center of the nanorods,it is possible to achieve either a single quasi-BIC or three quasi-BICs.The transmission spectra exhibit ultra-narrow lines,and the quasi-BICs demonstrate ultra-high Q factors.Additionally,efficient third-harmonic generation occurs at low pump intensities.The results indicate that the proposed nanostructures of two types of BICs with a flexible modulation hold great potential applications for nonlinear photonic devices.展开更多
文摘BACKGROUND Currently,very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia.METHODS In this retrospective study,94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia,admitted to Yiwu Central Hospital between May 2022 and May 2023,were divided into a control group(inhalation combined general anesthesia)and a treatment group(dexmedetomidine-assisted intrave-nous-inhalation combined general anesthesia).Perioperative indicators,analgesic effect,preoperative and postoperative 24-hours blood pressure(BP)and heart rate(HR),stress indicators,immune function levels,and adverse reactions were com-pared between the two groups.RESULTS Baseline data,including age,hernia location,place of residence,weight,monthly income,education level,and underlying diseases,were not significantly different between the two groups,indicating comparability(P>0.05).No significant difference was found in operation time and anesthesia time between the two groups(P>0.05).However,the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group(P<0.05).Preoperatively,no significant differences were found in the visual analog scale(VAS)scores between the two groups(P>0.05).However,at 12,18,and 24 hours postoper-atively,the treatment group had significantly lower VAS scores than the control group(P<0.05).Although no significant differences in preoperative hemodynamic indicators were found between the two groups(P>0.05),both groups experienced some extent of changes in postoperative HR,diastolic BP(DBP),and systolic BP(SBP).Nevertheless,the treatment group showed smaller changes in HR,DBP,and SBP than the control group(P<0.05).Preoperative immune function indicators showed no significant differences between the two groups(P>0.05).However,postoperatively,the treatment group demonstrated higher levels of CD3+,CD4+,and CD4+/CD8+and lower levels of CD8+than the control group(P<0.05).The rates of adverse reactions were 6.38%and 23.40%in the treatment and control groups,respectively,revealing a significant difference(χ2=5.371,P=0.020).CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia.It ensures stable blood flow,improves postoperative analgesic effects,reduces postoperative pain intensity,alleviates stress response,improves immune function,facilitates anesthesia recovery,and enhances safety.
文摘Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.
基金funded by Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology Sydney.Moreover,Ongoing Research Funding Program(ORF-2025-14)King Saud University,Riyadh,Saudi Arabia,under Project ORF-2025-。
文摘Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN models—DenseNet201,VGG16,InceptionV3,ResNet50,VGG19,MobileNetV2,Xception,and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance.The models were trained and tested on NUAA and Replay-Attack datasets,with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability.Performance was evaluated using accuracy,precision,recall,FAR,FRR,HTER,and specialized spoof detection metrics(APCER,NPCER,ACER).Fine-tuning significantly improved detection accuracy,with DenseNet201 achieving the highest performance(98.5%on NUAA,97.71%on Replay-Attack),while MobileNetV2 proved the most efficient model for real-time applications(latency:15 ms,memory usage:45 MB,energy consumption:30 mJ).A statistical significance analysis(paired t-tests,confidence intervals)validated these improvements.Cross-dataset experiments identified DenseNet201 and MobileNetV2 as the most generalizable architectures,with DenseNet201 achieving 86.4%accuracy on Replay-Attack when trained on NUAA,demonstrating robust feature extraction and adaptability.In contrast,ResNet50 showed lower generalization capabilities,struggling with dataset variability and complex spoofing attacks.These findings suggest that MobileNetV2 is well-suited for low-power applications,while DenseNet201 is ideal for high-security environments requiring superior accuracy.This research provides a framework for improving real-time face liveness detection,enhancing biometric security,and guiding future advancements in AI-driven anti-spoofing techniques.
文摘Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenance of children and adolescents on antiretroviral therapy in the continuum of care. Methodology: This was a descriptive and analytical cross-sectional study conducted from August 1 to August 31, 2023. It included all children living with HIV, under 15 years of age, with at least two viral load results and whose parents consented to participate in the study. Participants were recruited during their child’s treatment renewal consultations. Results: The study included 143 children, mostly boys (55.2%), with a mean age of 11.54 years (±2.8). More than half (55.2) were unaware of their HIV-positive status, and most treatments were administered by parents (60.8%). Of the 99 children with an undetectable viral load at the first test, 23 (23.2%) showed a viral rebound at the last test, mainly due to poor treatment compliance (p Conclusion: Virological rebound after suppression in children is worrying. It is crucial that the national AIDS program improves Therapeutic Education, trains health workers to communicate results and encourages ongoing dialogue with young people to reinforce adherence and maintain viral suppression.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
文摘A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.
基金supported by the National Key R&D Program of China(No.2018YFB1305400)the Major Research Plan of the National Natural Science Foundation of China(No.92048301)+1 种基金the National Natural Science Foundation of China(No.52025054)the Joint Research Fund between the National Natural Science Foundation of China(NSFC)and Shen Zhen(No.U1713201).
文摘This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.
文摘The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.
基金supported by the National Natural Science Foundation of China grants 42074198,42230209 and 42374215the Scientific Research Fund of Hunan Provincial Education Department Grants 21A0212,Post-graduate Scientific Research Innovation Project of Hunan Province CX20240804.
文摘The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were observed simultaneously near the magnetic equator by the Van Allen Probes.We identify the radio window(the region for mode conversion taking place)at L=4.059 by solving the fully-thermal dispersion relation.Ray tracing simulations show that the backward-propagating electrostatic mode can smoothly transition to Z-mode.Then,Z-mode can convert to KC when its direction shifts to parallel or anti-parallel propagation at the radio window,which aligns with observations.This study provides direct evidence that supports the linear mode conversion theory as an effective mechanism for KC generation.
基金Supported by National Natural Science Foundation of China(Grant Nos.52305003,52175019)National Key R&D Program of China(Grant No.2023YFD2001100)+2 种基金Beijing Natural Science Foundation(Grant No.L222038)Beijing Nova Programme Interdisciplinary Cooperation Project(Grant No.20240484699)Project“Vice President of Science and Technology”of Changping District of Beijing.
文摘The design and analysis of continuum robots have consistently been a prominent research focus in the field of mechanics.However,portable continuum robots with minimal spatial occupancy,which have great potential for applications such as search and rescue,are scarcely available.This paper presents a novel helical-coiled multi-segment flexible continuum robot featuring helical deployment and compact design,with an integrated framework for structural design,kinematic modeling,and experimental validation.The design of the helical-coiled multi-segment flexible continuum robot for unstructured environment detection,including a flexible body,an actuation module,a feed module,and a sensing module,is presented systematically.Kinematic models of both single-and multisegment continuum robots were established based on the constant curvature model to analyze the parameter mapping relationship from the end-effector position and orientation to the driving inputs.Furthermore,the feedforward motion of the robot was examined,and an uncoiling strategy based on S-curve compensation was employed to complete the kinematic analysis.Finally,the accuracy of the kinematic model considering the active uncoiling feed motion was validated through experimental analysis,demonstrating the motion characteristics of the continuum robot.Altogether,this study provides a framework for the design and analysis of helical-coiled continuum robots.
基金supported by the National Natural Science Foundation of China(Nos.U2040201,32201334,92251304,and 42271126),the Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou,No.GML20220017),the Outstanding Postdoctoral Project in Jiangsu Province(No.2022ZB455),the Chinese Postdoctoral Science Foundation(No.2022M721661)and the Project of State Key Laboratory of Lake Science and Environment(No.2022SKL019).
文摘Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox in river–estuary continuum is limited.In this study,stable isotope tracers and high-throughput amplicon sequencing were employed to determine Feammox rates and identify associated microbial communities in sediments along the Yangtze river–estuary continuum.Feammox rates averaged 0.0058±0.0069 mg N/(kg·d)and accounted for approximately 22.3%of the ammonium removed from the sediments.Sediment Fe(III),ammonium(NH_(4)^(+)),total organic carbon(TOC),and pH were identified as important factors influencing Feammox rates.Additionally,Spirochaeta,Caldilineaceae_uncultured,and Ignavibacterium were found potentially associated with Feammox,which had not been documented as Feammox-associated microbial taxa previously.This study demonstrates that Feammox plays a vital role in ammonium removal within the Yangtze river–estuary continuum,providing greater insight into nitrogen removal and cycling in aquatic ecosystems.
基金supported by the National Natural Science Foundation of China(No.12005198).
文摘In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406604)the National Natural Science Foundation of China (Grant Nos. 12274260, 12204306, 12122413, and 12474120)+1 种基金the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2024YQ001)the Qilu Young Scholar Programs of Shandong University。
文摘We report the bifurcation of bound states in the continuum(BICs) in a dissipative cavity magnonic system, where a BIC splits into a pair of BICs. We theoretically analyze BICs in a dissipative cavity magnonic system and derive the critical condition for BICs bifurcation. Based on the theoretical results, we experimentally tune the dissipative photon–magnon coupling strength and demonstrate precise control over the detuning and number of BICs. When the dissipative coupling strength reaches a critical value, we observe the bifurcation of BICs, which is consistent with the theoretical prediction. Our systematic investigation of the evolution of BICs concerning the dissipative coupling strength and the discovery of the BIC bifurcation may enhance the sensitivity of BICs to external perturbations, potentially enabling applications in ultrasensitive detection.
基金the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117)programBeijing Nova Program(No.20250484994)Beijing Natural Science Foundation(JQ24028).
文摘Spectral and polarization information are crucial for characterizing the composition and surface morphology of various materials.However,traditional spectral and polarization detection systems are hampered by bulky,single-function optical components and complex configurations,hindering the portable,low-cost,and multifunctional applications in compact,field-deployable devices.In this study,we introduce a miniaturized near-infrared(NIR)spectro-polarimetric detection device utilizing a group of meta-spectro-polarimeters(MSPs),which support quasi-bound states in the continuum(QBIC)under specific incident polarization,significantly reducing the spatial footprint and improving the design scalability.By precisely adjusting the high quality resonances and polarization sensitive radiation behavior of MSPs,we not only extend the number of spectral waveband to 20 that greatly surpassing traditional division-of-amplitude or division-of-time schemes,but also ensure an average spectral resolution power(SRP,λ/Δλ)of 71.03.We achieve high accuracy multidimensional spectro-polarization detection,resulting in the angle of linear polarization(AoLP)with an average error of 4.67°and precise spectrum reconstruction in a machine-learning free way,avoiding the huge computational power and energy during the training process.Additionally,we demonstrate the high spectro-polarimetric imaging performance of our system in different experimental scene.Such multidimensional detection device holds great promise for adoption in fields like aerospace,chemical detection,machine vision,and so on.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2022QH144).
文摘The phenomenon of fear memory generalization can be defined as the expansion of an individual's originally specific fear responses to a similar yet genuinely harmless stimulus or situation subsequent to the occurrence of a traumatic event[1].Fear generalization within the normal range represents an adaptive evolutionary mechanism to facilitate prompt reactions to potential threats and to enhance the likelihood of survival.
基金Supported by the National Key R&D Program of China(No.2023YFB4502200)the National Natural Science Foundation of China(No.U22A2028,61925208,62222214,62341411,62102398,62102399,U20A20227,62302478,62302482,62302483,62302480,62302481)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0660300,XDB0660301,XDB0660302)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-029)the Youth Innovation Promotion Association of Chinese Academy of Sciences and Xplore Prize.
文摘The challenge of enhancing the generalization capacity of reinforcement learning(RL)agents remains a formidable obstacle.Existing RL methods,despite achieving superhuman performance on certain benchmarks,often struggle with this aspect.A potential reason is that the benchmarks used for training and evaluation may not adequately offer a diverse set of transferable tasks.Although recent studies have developed bench-marking environments to address this shortcoming,they typically fall short in providing tasks that both ensure a solid foundation for generalization and exhibit significant variability.To overcome these limitations,this work introduces the concept that‘objects are composed of more fundamental components’in environment design,as implemented in the proposed environment called summon the magic(StM).This environment generates tasks where objects are derived from extensible and shareable basic components,facilitating strategy reuse and enhancing generalization.Furthermore,two new metrics,adaptation sensitivity range(ASR)and parameter correlation coefficient(PCC),are proposed to better capture and evaluate the generalization process of RL agents.Experimental results show that increasing the number of basic components of the object reduces the proximal policy optimization(PPO)agent’s training-testing gap by 60.9%(in episode reward),significantly alleviating overfitting.Additionally,linear variations in other environmental factors,such as the training monster set proportion and the total number of basic components,uniformly decrease the gap by at least 32.1%.These results highlight StM’s effectiveness in benchmarking and probing the generalization capabilities of RL algorithms.
文摘Mingalarpar!On behalf of the Consulate-General of the Republic of the Union of Myanmar in Nanning,I would like to express my sincerest congratulations to CAEXPO on reaching the remarkable milestone of over 20 years—an incredible journey filled with numerous achievements.
文摘BACKGROUND The coronavirus disease 2019(COVID-19)outbreak lasted several months,having started in December 2019.This study aimed to report the impacts of various factors on the depression levels of the general public and ascertain how emotional measures could be affected by psychosocial factors during the COVID-19 pandemic.AIM To investigate the depression levels of the general public in China during the COVID-19 pandemic.METHODS A total of 2001 self-reported questionnaires about Beck Depression Inventory(BDI)were collected on August 22,2022 via the website.Each questionnaire included four levels of depression and other demographic information.The BDI scores and incidences of different depression levels were compared between various groups of respondents.χ2 analysis and the two-tailed t-test were used to assess categorical and continuous data,respectively.Multiple linear regressions and logistic regressions were employed for correlation analysis.RESULTS The averaged BDI score in this study was higher than that for the non-epidemic periods,as reported in previous studies.Even higher BDI scores and incidences of moderate and severe depression were recorded for people who were quarantined for suspected COVID-19 infection,compared to the respondents who were not quarantined.The participants who did not take protective measures were associated with higher BDI scores than those who made efforts to keep themselves relatively safer.Similarly,the people who did not return to work had higher BDI scores compared to those managed to.A significant association existed between the depression levels of the subgroups and each of the factors,except gender and location of residence.However,quarantine was the most relative predictor for depression levels,followed by failure to take preventive measures and losing a partner,either through divorce or death.CONCLUSION Based on these data,psychological interventions for the various subpopulations in the general public can be implemented during and after the COVID-19 pandemic.Other countries can also use the data as a reference.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174228 and 12274271)。
文摘Two types of bound states in continuum(BICs),symmetry-protected and Brillouin zone folding driven,are identified in hollow Si nanorod arrays.By modulating the direction and distance of the air holes from the center of the nanorods,it is possible to achieve either a single quasi-BIC or three quasi-BICs.The transmission spectra exhibit ultra-narrow lines,and the quasi-BICs demonstrate ultra-high Q factors.Additionally,efficient third-harmonic generation occurs at low pump intensities.The results indicate that the proposed nanostructures of two types of BICs with a flexible modulation hold great potential applications for nonlinear photonic devices.