The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through...The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.展开更多
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ...In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.展开更多
When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the c...When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the classical Cauchy elasticity since an additional local rotation of point and its counterpart(couple stress)are considered in the Cosserat elasticity to represent the material microscale effects.In this paper,a parameterized level set topology optimization method is developed based on the Cosserat elasticity for the minimum compliance problem of the Cosserat solids.The influence of material characteristic length and Cosserat shear modulus on the optimized structure is investigated in detail.It can be found that the microstructural constants in the Cosserat elasticity have a significant impact on the optimized topology configurations.In addition,the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily.Furthermore,the optimized structure obtained by the developed Cosserat elasticity based parameterized level set method will degenerate to the result by using the classical Cauchy elasticity based parameterized level set method when the Cosserat shear modulus approaches zero.展开更多
介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penaliz...介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
基金supported by the National Natural Science Foundation of China(Grant 12472113).
文摘The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.
文摘In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
基金This work was supported by the National Natural Science Foundation of China(Grants 12072242,11772237,and 11472196)the Hubei Provincial Natural Science Foundation(Grant 2020CFB816)the Fundamental Research Funds for the Central Universities(Grant 2042018kf0016).
文摘When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the classical Cauchy elasticity since an additional local rotation of point and its counterpart(couple stress)are considered in the Cosserat elasticity to represent the material microscale effects.In this paper,a parameterized level set topology optimization method is developed based on the Cosserat elasticity for the minimum compliance problem of the Cosserat solids.The influence of material characteristic length and Cosserat shear modulus on the optimized structure is investigated in detail.It can be found that the microstructural constants in the Cosserat elasticity have a significant impact on the optimized topology configurations.In addition,the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily.Furthermore,the optimized structure obtained by the developed Cosserat elasticity based parameterized level set method will degenerate to the result by using the classical Cauchy elasticity based parameterized level set method when the Cosserat shear modulus approaches zero.
文摘介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。