Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer...Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.展开更多
Cu-Ti alloys are a kind of elastic copper alloys with excellent comprehensive properties.They are often used in electronic and electrical fields.However,discontinuous precipitation may occur during the preparation pro...Cu-Ti alloys are a kind of elastic copper alloys with excellent comprehensive properties.They are often used in electronic and electrical fields.However,discontinuous precipitation may occur during the preparation process of Cu-Ti alloys,and they can lead to the significant deterioration of mechanical properties.To solve this problem,three Cu-Ti alloys with various Fe contents(Cu-2.7Ti,Cu-2.7Ti-0.1Fe and Cu-2.7Ti-0.2Fe)were designed and prepared in this paper to investigate the effects of Fe on the discontinuous precipitation.The results showed that after aging at any given aging time and temperature,the area fraction of cellular structure decreased with the increase of Fe content.The addition of Fe into Cu-Ti alloys resulted in Fe doping inβ'-Cu_(4)Ti phase andβ-Cu_(4)Ti phase.For 450℃/144 h-aged Cu-2.7Ti-0.2Fe alloy,the Fe content inβ'-Cu_(4)Ti phase andβ-Cu_(4)Ti phase was 1.59 at%and 0.90 at%,respectively.The tensile tests showed that under the same aging treatment conditions,Cu-2.7Ti-0.2Fe alloy possessed better mechanical properties.First-principles calculation confirmed that the thermodynamic stability ofβ'-Cu_(4)Ti phase was enhanced by decreasing its cohesive energy through Fe doping.At the same time,the enthalpy of formation ofβ-Cu_(4)Ti phase was generally increased by Fe doping,making it difficult to generate.In short,Fe addition in Cu-Ti alloys suppressed discontinuous precipitation by Fe doping in the precipitates and helped to improve mechanical properties.展开更多
Mechanism of discontinuous precipitation(DP) in AZ80 alloy was investigated by phase-orientation correlated characterization.The results show DPs nucleate by turning the original grain boundaries(GBs) as reaction fron...Mechanism of discontinuous precipitation(DP) in AZ80 alloy was investigated by phase-orientation correlated characterization.The results show DPs nucleate by turning the original grain boundaries(GBs) as reaction front(RF),and further driving the RF to realize their growth.The DPs regions retained the same orientations as their parent grains.The misorientation angle and rotation axis of RFs had strong influence on DPs nucleation.The low-angle GBs,twin boundaries(TBs) and the GBs with specific misorientation axis which are known as low energy and low mobility GBs can hardly initiate DPs.In addition,the TBs had a strong ability to inhibit the growth of DPs,but it should be noticed that the growth of DPs cannot be totally inhibited by TBs.DPs can engulf the twins when the growth direction is approximately parallel to the long axis of TBs.The inhibition behavior is related to the distribution of Al solute atoms near the RF,boundary interactions of the TBs and twin tips with the RF,and the morphology of the continuous precipitations within the twins.展开更多
A dislocation density-based crystal plasticity finite element(CPFE)model is developed to reveal the mechanism of discontinuous dynamic recrystallization(DDRX)of the TC17 dual-phase titanium alloy during hot deformatio...A dislocation density-based crystal plasticity finite element(CPFE)model is developed to reveal the mechanism of discontinuous dynamic recrystallization(DDRX)of the TC17 dual-phase titanium alloy during hot deformation.The model incorporates the temperature and strain rate dependence of nucleation,growth and evolution during DDRX.The evolution of the dislocation densities in the matrix grains(MGs)and the recrystallized grains(RGs)is considered individually.The mechanical response and underlying microstructural evolution are systematically investigated by comparing the CPFE model predictions with experimental tests.The results indicate that at lower temperatures(700℃ and 800℃),TC17 titanium alloy exhibits a higher volume fraction of recrystallization and a notable drop in flow stress.As the temperature increases(900℃ and 1000℃),the volume fraction of recrystallization decreases,resulting in a weakened flow stress softening.The nucleation rate of DDRX increases with decreasing deformation temperature and increasing strain rate,while the size of RGs increases with higher temperature and lower strain rate.DDRX nuclei primarily occur at grain boundaries with high dislocation density.Furthermore,DDRX consumes a large number of dislocations and thus reduces the stress concentration and dislocation density at grain boundaries.This study provides a robust model that enhances the understanding of hot deformation mechanisms and informs the design of high-performance titanium alloys for future applications.展开更多
In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators bas...In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators based on multiphysics discontinuous Galerkin method for the poroelasticity model.And we prove the upper and lower bound of the proposed error estimators,which are numerically demonstrated to be computationally very efficient.Finally,we present numerical examples to verify and validate the efficiency of the proposed error estimators,which show that the adaptive scheme can overcome“locking phenomenon”and greatly reduce the computation cost.展开更多
Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this stud...Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-St...We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.展开更多
A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,...A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,numerical and/or experimental results.In the DSPH method,cracking is realized by breaking the virtual bonds via a pseudo-spring method based on Mohr–Coulomb failure criteria.The damaged particles are instantaneously replaced by discontinuous particles and the contact bond between the original and discontinuous particles is formed to simulate the frictional slip and separation/contraction between fracture surfaces based on the block contact algorithm.The motion of rock blocks and the contact force of discontinuous particles are determined following Newton's second law.The results indicate that the DSPH method precisely captures the cracking,contact formation and complete failure across six numerical benchmark tests.This single smoothed particle hydrodynamics(SPH)framework could significantly improve computational efficiency and is potentially applicable to broad multi-physical rock engineering problems of different scales.展开更多
Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new...Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new pathway to improve properties, by preparation of nanometer lamellar discontinuous precipitates(DPs) arranged with the approximate same direction through a combination of deformationaging and cold rolling process. The strengthening effect is primarily attributed to nanometer-lamellar DPs strengthening and dislocation strengthening mechanism. The accumulation of dislocations at the interface between nanometer lamellar DPs and matrix during cold deformation process can results in the decrease of dislocation density inside the matrix grains, leading to the acceptably slight reduction of electrical conductivity during cold rolling. The alloy exhibits an electrical conductivity of 45.32%IACS(international annealed copper standard, IACS), a tensile strength of 882.67 MPa, and a yield strength of 811.33 MPa by this method. This study can provide a guidance for the composition and microstructure design of a Cu–Ni–Si alloy in the future, by controlling the morphology and distribution of DPs.展开更多
A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy metho...A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.展开更多
In the framework of finite element meshes,a novel continuous/discontinuous deformation analysis(CDDA)method is proposed in this paper for modeling of crack problems.In the present CDDA,simple polynomial interpolations...In the framework of finite element meshes,a novel continuous/discontinuous deformation analysis(CDDA)method is proposed in this paper for modeling of crack problems.In the present CDDA,simple polynomial interpolations are defined at the deformable block elements,and a link element is employed to connect the adjacent block elements.The CDDA is particularly suitable for modeling the fracture propagation because the switch from continuous deformation analysis to discontinuous deformation analysis is natural and convenient without additional procedures.The SIFs(stress intensity factors)for various types of cracks,such as kinked cracks or curved cracks,can be easily computed in the CDDA by using the virtual crack extension technique(VCET).Both the formulation and implementation of the VCET in CDDA are simple and straightforward.Numerical examples indicate that the present CDDA can obtain high accuracy in SIF results with simple polynomial interpolations and insensitive to mesh sizes,and can automatically simulate the crack propagation without degrading accuracy.展开更多
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati...A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quan...The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quantifying the yield drop of the DYP (△σUL) and ending strain of flow oscillation (εOSC) based on the flow stress?strain curves, and then the effect of deformation parameters on the △σUL and εOSC values was analyzed. The results show that the △σUL and εOSC values increase with the increase of strain rate. The effect of deformation temperature on the ?σUL value depends on the strain rate. Finally, the transmission electron microscope (TEM) observation shows the evidence for the dynamic theory, which ascribes the DYP to the generation of mobile dislocation at the grain boundary. Meanwhile, the optical microscope (OM) observation shows that both the primary α grain and β grain become smaller with the increase of strain, which well interprets the effect of deformation parameters on the △σUL and εOSC values.展开更多
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations....A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.展开更多
An example is presented to introduce the concept of implicit continuity proposed as contrasted with the explicit continuity.A sufficient and necessary condition of the implicit continuity is given and proved in forms ...An example is presented to introduce the concept of implicit continuity proposed as contrasted with the explicit continuity.A sufficient and necessary condition of the implicit continuity is given and proved in forms of implicit system.This condition also offers the solution of initial values at the points where the dynamic system is discontinuous.Some discussions are contributed to the physical significance of implicit continuity.展开更多
Therapy discontinuation in inflammatory bowel disease,particularly involving immunomodulators,biologics,and small molecules,remains a controversial and evolving topic.This letter reflects on developments following the...Therapy discontinuation in inflammatory bowel disease,particularly involving immunomodulators,biologics,and small molecules,remains a controversial and evolving topic.This letter reflects on developments following the publication by Meštrovićet al,emphasizing the complex balance between risks of relapse,antidrug antibody formation,and potential complications of long-term immunosuppression.Recent evidence underscores high relapse rates following withdrawal-especially of anti-tumor necrosis factor agents-and highlights the lack of robust data for newer biologics.Updated guidelines from European Crohn’s and Colitis Organization,British Society of Gastroenterology,and American College of Gastroenterology all support cautious and individualized approaches,with strict criteria and close follow-up,particularly in Crohn’s disease.For ulcerative colitis,therapeutic cycling remains insufficiently addressed.We proposed a flowchart to support clinical decision-making and stress the importance of shared decisionmaking in the era of personalized medicine since,despite new drug classes and evolving strategies,the therapeutic ceiling in inflammatory bowel disease has yet to be fully overcome.展开更多
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D...This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D DDA approach.Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact,such as of vertex-to-vertex,vertex- to-edge and edge-to-edge types,can be handled easily based on the C-P method.The matrices of equilibrium equations have been given in detail for programming purposes.The C program codes for the 3D DDA are developed.The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples.The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes.Finally,implications and future extensions are discussed.展开更多
基金supported by the China Scholarship Council(CSC,Grant No.202108050072)JSPS KAKENHI(Grant No.JP19KK0121)。
文摘Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.
基金supported by the National Natural Science Foundation of China(No.U2202255)Hunan Provincial Natural Science Foundation of China(No.2024JJ2076)the Key Technology Research Program of Ningbo(No.2023Z092).
文摘Cu-Ti alloys are a kind of elastic copper alloys with excellent comprehensive properties.They are often used in electronic and electrical fields.However,discontinuous precipitation may occur during the preparation process of Cu-Ti alloys,and they can lead to the significant deterioration of mechanical properties.To solve this problem,three Cu-Ti alloys with various Fe contents(Cu-2.7Ti,Cu-2.7Ti-0.1Fe and Cu-2.7Ti-0.2Fe)were designed and prepared in this paper to investigate the effects of Fe on the discontinuous precipitation.The results showed that after aging at any given aging time and temperature,the area fraction of cellular structure decreased with the increase of Fe content.The addition of Fe into Cu-Ti alloys resulted in Fe doping inβ'-Cu_(4)Ti phase andβ-Cu_(4)Ti phase.For 450℃/144 h-aged Cu-2.7Ti-0.2Fe alloy,the Fe content inβ'-Cu_(4)Ti phase andβ-Cu_(4)Ti phase was 1.59 at%and 0.90 at%,respectively.The tensile tests showed that under the same aging treatment conditions,Cu-2.7Ti-0.2Fe alloy possessed better mechanical properties.First-principles calculation confirmed that the thermodynamic stability ofβ'-Cu_(4)Ti phase was enhanced by decreasing its cohesive energy through Fe doping.At the same time,the enthalpy of formation ofβ-Cu_(4)Ti phase was generally increased by Fe doping,making it difficult to generate.In short,Fe addition in Cu-Ti alloys suppressed discontinuous precipitation by Fe doping in the precipitates and helped to improve mechanical properties.
基金supported by National Natural Science Foundation of China (52201107)Research Program of Chongqing Municipal Education Commission (KJQN202201151)Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0067).
文摘Mechanism of discontinuous precipitation(DP) in AZ80 alloy was investigated by phase-orientation correlated characterization.The results show DPs nucleate by turning the original grain boundaries(GBs) as reaction front(RF),and further driving the RF to realize their growth.The DPs regions retained the same orientations as their parent grains.The misorientation angle and rotation axis of RFs had strong influence on DPs nucleation.The low-angle GBs,twin boundaries(TBs) and the GBs with specific misorientation axis which are known as low energy and low mobility GBs can hardly initiate DPs.In addition,the TBs had a strong ability to inhibit the growth of DPs,but it should be noticed that the growth of DPs cannot be totally inhibited by TBs.DPs can engulf the twins when the growth direction is approximately parallel to the long axis of TBs.The inhibition behavior is related to the distribution of Al solute atoms near the RF,boundary interactions of the TBs and twin tips with the RF,and the morphology of the continuous precipitations within the twins.
基金supported by the National Natural Science Foundation of China(Grant Nos.52105393,52305334,and U22A20186).
文摘A dislocation density-based crystal plasticity finite element(CPFE)model is developed to reveal the mechanism of discontinuous dynamic recrystallization(DDRX)of the TC17 dual-phase titanium alloy during hot deformation.The model incorporates the temperature and strain rate dependence of nucleation,growth and evolution during DDRX.The evolution of the dislocation densities in the matrix grains(MGs)and the recrystallized grains(RGs)is considered individually.The mechanical response and underlying microstructural evolution are systematically investigated by comparing the CPFE model predictions with experimental tests.The results indicate that at lower temperatures(700℃ and 800℃),TC17 titanium alloy exhibits a higher volume fraction of recrystallization and a notable drop in flow stress.As the temperature increases(900℃ and 1000℃),the volume fraction of recrystallization decreases,resulting in a weakened flow stress softening.The nucleation rate of DDRX increases with decreasing deformation temperature and increasing strain rate,while the size of RGs increases with higher temperature and lower strain rate.DDRX nuclei primarily occur at grain boundaries with high dislocation density.Furthermore,DDRX consumes a large number of dislocations and thus reduces the stress concentration and dislocation density at grain boundaries.This study provides a robust model that enhances the understanding of hot deformation mechanisms and informs the design of high-performance titanium alloys for future applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12371393 and 11971150)Natural Science Foundation of Henan(Grant No.242300421047).
文摘In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators based on multiphysics discontinuous Galerkin method for the poroelasticity model.And we prove the upper and lower bound of the proposed error estimators,which are numerically demonstrated to be computationally very efficient.Finally,we present numerical examples to verify and validate the efficiency of the proposed error estimators,which show that the adaptive scheme can overcome“locking phenomenon”and greatly reduce the computation cost.
基金financially supported by the National Key R&D Program of China(Grant No.2023YFC3081200)the National Natural Science Foundation of China(Grant Nos.U21A20159 and 52179117).
文摘Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.
基金supported by the National Natural Science Foundation of China(Grant Nos.92252201 and 11721202)the Fundamental Research Funds for the Central Universities.
文摘We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.
基金financial support from the National Key Research and Development Program of China(Grant No.2019YFC1509702)the Fundamental Research Funds for the Central Universities in Chinathe National Natural Science Foundation of China(Grant No.42377162).
文摘A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,numerical and/or experimental results.In the DSPH method,cracking is realized by breaking the virtual bonds via a pseudo-spring method based on Mohr–Coulomb failure criteria.The damaged particles are instantaneously replaced by discontinuous particles and the contact bond between the original and discontinuous particles is formed to simulate the frictional slip and separation/contraction between fracture surfaces based on the block contact algorithm.The motion of rock blocks and the contact force of discontinuous particles are determined following Newton's second law.The results indicate that the DSPH method precisely captures the cracking,contact formation and complete failure across six numerical benchmark tests.This single smoothed particle hydrodynamics(SPH)framework could significantly improve computational efficiency and is potentially applicable to broad multi-physical rock engineering problems of different scales.
基金supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Founda tion of China (Nos. 51925401, 92066205, and 92266301)。
文摘Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new pathway to improve properties, by preparation of nanometer lamellar discontinuous precipitates(DPs) arranged with the approximate same direction through a combination of deformationaging and cold rolling process. The strengthening effect is primarily attributed to nanometer-lamellar DPs strengthening and dislocation strengthening mechanism. The accumulation of dislocations at the interface between nanometer lamellar DPs and matrix during cold deformation process can results in the decrease of dislocation density inside the matrix grains, leading to the acceptably slight reduction of electrical conductivity during cold rolling. The alloy exhibits an electrical conductivity of 45.32%IACS(international annealed copper standard, IACS), a tensile strength of 882.67 MPa, and a yield strength of 811.33 MPa by this method. This study can provide a guidance for the composition and microstructure design of a Cu–Ni–Si alloy in the future, by controlling the morphology and distribution of DPs.
基金financially supported by the National Natural Science Foundation of China(Nos.52301145,52275329)the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300158)+1 种基金the Fundamental Research Fund for the Central Universities,China(No.N2202010)the Key Research Programs of High Education Institutions in Henan Province,China(No.24A430017).
文摘A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.
基金The authors gratefully acknowledge the support of Nature Science Foundation of China(Grant No.41130751)National Basic Research Program of China(Grant No.2011CB013800)New Century Excellent Talents Project in China(NCET-12-0415).
文摘In the framework of finite element meshes,a novel continuous/discontinuous deformation analysis(CDDA)method is proposed in this paper for modeling of crack problems.In the present CDDA,simple polynomial interpolations are defined at the deformable block elements,and a link element is employed to connect the adjacent block elements.The CDDA is particularly suitable for modeling the fracture propagation because the switch from continuous deformation analysis to discontinuous deformation analysis is natural and convenient without additional procedures.The SIFs(stress intensity factors)for various types of cracks,such as kinked cracks or curved cracks,can be easily computed in the CDDA by using the virtual crack extension technique(VCET).Both the formulation and implementation of the VCET in CDDA are simple and straightforward.Numerical examples indicate that the present CDDA can obtain high accuracy in SIF results with simple polynomial interpolations and insensitive to mesh sizes,and can automatically simulate the crack propagation without degrading accuracy.
基金Projects (50935007,51175428) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China+2 种基金Project (NPU-FFR-JC20100229) supported by the Foundation for Fundamental Research of Northwestern Polytechnical University in ChinaProject (27-TZ-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to University,China
文摘A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The discontinuous yielding phenomenon (DYP) during high temperature deformation was investigated based on the isothermal compression of TC8 titanium alloy. The DYP of TC8 titanium alloy was characterized by quantifying the yield drop of the DYP (△σUL) and ending strain of flow oscillation (εOSC) based on the flow stress?strain curves, and then the effect of deformation parameters on the △σUL and εOSC values was analyzed. The results show that the △σUL and εOSC values increase with the increase of strain rate. The effect of deformation temperature on the ?σUL value depends on the strain rate. Finally, the transmission electron microscope (TEM) observation shows the evidence for the dynamic theory, which ascribes the DYP to the generation of mobile dislocation at the grain boundary. Meanwhile, the optical microscope (OM) observation shows that both the primary α grain and β grain become smaller with the increase of strain, which well interprets the effect of deformation parameters on the △σUL and εOSC values.
基金Supported by the National Natural Science Foundation of China(50976072,51106099,10902070)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50501)the Science Foundation for the Excellent Youth Scholar of Higher Education of Shanghai(slg09003)~~
文摘A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.
文摘An example is presented to introduce the concept of implicit continuity proposed as contrasted with the explicit continuity.A sufficient and necessary condition of the implicit continuity is given and proved in forms of implicit system.This condition also offers the solution of initial values at the points where the dynamic system is discontinuous.Some discussions are contributed to the physical significance of implicit continuity.
文摘Therapy discontinuation in inflammatory bowel disease,particularly involving immunomodulators,biologics,and small molecules,remains a controversial and evolving topic.This letter reflects on developments following the publication by Meštrovićet al,emphasizing the complex balance between risks of relapse,antidrug antibody formation,and potential complications of long-term immunosuppression.Recent evidence underscores high relapse rates following withdrawal-especially of anti-tumor necrosis factor agents-and highlights the lack of robust data for newer biologics.Updated guidelines from European Crohn’s and Colitis Organization,British Society of Gastroenterology,and American College of Gastroenterology all support cautious and individualized approaches,with strict criteria and close follow-up,particularly in Crohn’s disease.For ulcerative colitis,therapeutic cycling remains insufficiently addressed.We proposed a flowchart to support clinical decision-making and stress the importance of shared decisionmaking in the era of personalized medicine since,despite new drug classes and evolving strategies,the therapeutic ceiling in inflammatory bowel disease has yet to be fully overcome.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
基金The project supported by the National Natural Science Foundation of China (50139010)
文摘This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D DDA approach.Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact,such as of vertex-to-vertex,vertex- to-edge and edge-to-edge types,can be handled easily based on the C-P method.The matrices of equilibrium equations have been given in detail for programming purposes.The C program codes for the 3D DDA are developed.The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples.The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes.Finally,implications and future extensions are discussed.