To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip c...To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW' s wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW' s wavelet device are remarkably improved compared with those of the FGSAW' s wavelet device.展开更多
This paper gives an overview of phenomena associated with particles and bubbles in continuously cast steel. During steel processing from deoxidation to solidification the inclusion population undergoes changes with op...This paper gives an overview of phenomena associated with particles and bubbles in continuously cast steel. During steel processing from deoxidation to solidification the inclusion population undergoes changes with opportunities of removal. Flotation is an important separation mechanism. Inclusion particles may accumulate in the solidifying strand, thus forming enriched bands, which depend on the type of casting machine. Bubbles are created during inert gas injection. They also change in size, can float out, but also form accumulation bands. The interaction of bubbles and particles is discussed. Internal structure that recently has been observed on the inner surface of bubbles will be reviewed.展开更多
Additive manufacturing(AM)is a reliable technique for constructing highly complex metallic parts.Direct energy deposition(DED)is one of the most common technologies used for AM-printed metal alloys.However,issues such...Additive manufacturing(AM)is a reliable technique for constructing highly complex metallic parts.Direct energy deposition(DED)is one of the most common technologies used for AM-printed metal alloys.However,issues such as weak binding,poor accuracy,and rough surfaces still affect the final products.These limitations in the metal-feed DED process indicate that post-processing techniques are required to achieve high quality in terms of both mechanical properties and surface finish.Conventional contact-based post-processing methods have several drawbacks,including difficulties in accessing complex shapes,environmental impact,high time consumption and cost,and health risks for operators.To address these problems and improve surface quality,a laser polishing process has been proposed.By melting or ablating the material with a laser,the laser-polishing process enables the smoothing of the initial topography.It should be noted that there are currently no reviews focusing specifically on laser polishing as a surface treatment technology for the DED process.Therefore,this review presents a unique examination of the mechanisms and primary user-set parameters for both continuous wave(CW)and pulsed laser polishing.The objective is to demonstrate the capabilities of each process and the benefits of using them for the surfaces of DED metal parts.Additionally,existing knowledge and technology gaps are identified,and future research directions are discussed.展开更多
基金This project was supported by the National Natural Science Foundation of China (60476037 ,60176020) and the Doc-toral Foundation of the Ministry of Education of China (20020698014)
文摘To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW' s wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW' s wavelet device are remarkably improved compared with those of the FGSAW' s wavelet device.
文摘This paper gives an overview of phenomena associated with particles and bubbles in continuously cast steel. During steel processing from deoxidation to solidification the inclusion population undergoes changes with opportunities of removal. Flotation is an important separation mechanism. Inclusion particles may accumulate in the solidifying strand, thus forming enriched bands, which depend on the type of casting machine. Bubbles are created during inert gas injection. They also change in size, can float out, but also form accumulation bands. The interaction of bubbles and particles is discussed. Internal structure that recently has been observed on the inner surface of bubbles will be reviewed.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB4600901).
文摘Additive manufacturing(AM)is a reliable technique for constructing highly complex metallic parts.Direct energy deposition(DED)is one of the most common technologies used for AM-printed metal alloys.However,issues such as weak binding,poor accuracy,and rough surfaces still affect the final products.These limitations in the metal-feed DED process indicate that post-processing techniques are required to achieve high quality in terms of both mechanical properties and surface finish.Conventional contact-based post-processing methods have several drawbacks,including difficulties in accessing complex shapes,environmental impact,high time consumption and cost,and health risks for operators.To address these problems and improve surface quality,a laser polishing process has been proposed.By melting or ablating the material with a laser,the laser-polishing process enables the smoothing of the initial topography.It should be noted that there are currently no reviews focusing specifically on laser polishing as a surface treatment technology for the DED process.Therefore,this review presents a unique examination of the mechanisms and primary user-set parameters for both continuous wave(CW)and pulsed laser polishing.The objective is to demonstrate the capabilities of each process and the benefits of using them for the surfaces of DED metal parts.Additionally,existing knowledge and technology gaps are identified,and future research directions are discussed.