In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized co...In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized coal is developed, in which the oxidation and reduction reaction occur alternatively with the dropping of pulverized coal and finally HHV gas could be continuously obtained at the reduction zone exit and low heat value(LHV) gas at the oxidation zone exit. Furthermore, the gasification characteristics and their factors in furnace are numerically simulated under two dimensional model with a self-coded program, based on heat, mass and energy transfer as well as reaction principles. It is found that the producing rate of HHV gas is 1.10Nm3/kg with heat value of ll.72MJ/Nm3, how- ever, that of LHV gas is 2.58Nm3/kg with heat value of 5.30MJ/Nm3, and the coal gas efficiency is 81.16% under optimized conditions.展开更多
Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the ...Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the structures are damaged.Aiming at the lightweight structure,fatigue topology optimization design is investigated to avoid the occurrence of fatigue failure in the structural conceptual design beforehand.Firstly,the fatigue life is expressed by topology variables and the fatigue life filter function.The continuum fatigue optimization model is established with the independent continuous mapping(ICM)method.Secondly,fatigue life constraints are transformed to distortion energy constraints explicitly by taking advantage of the distortion energy theory.Thirdly,the optimization formulation is solved by the dual sequence quadratic programming(DSQP).And the design scheme of lightweight structure considering the fatigue characteristics is obtained.Finally,numerical examples illustrate the practicality and effectiveness of the fatigue optimization method.This method further expands the theoretical application of the ICM method and provides a novel approach for the fatigue optimization problem.展开更多
In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopt...In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopts time-averaged aerodynamic coefficients as objective functions is presented. The time-accurate continuous adjoint equation and its boundary conditions are derived. The flow field and the adjoint equation are simulated numerically by the finite volume method (FVM). Feasibility and accuracy of the approach are perfectly validated by the design optimization results of the plunging NACA0012 airfoil.展开更多
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved hav...By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.展开更多
It's common to use the method of continuous spectroscopy in water quality testing. But there're some problems with it. For example, the scanning results have a large number of nonlinear signals, and the covari...It's common to use the method of continuous spectroscopy in water quality testing. But there're some problems with it. For example, the scanning results have a large number of nonlinear signals, and the covariance between variables is serious, which can lead to a decrease in the model prediction accuracy. In this paper, the standard solutions of nitrate nitrogen(NO_(3)-N) and nitrite nitrogen(NO_(2)-N) were used as the subject to be tested, and the data of the scanned waves and absorbance were obtained by use of spectral detector. The data were processed by noise reduction first and then the random forest(RF) algorithm was adopted to establish the regression relationship between concentration and absorbance. For comparison, partial least squares(PLS) and support vector machine(SVM) algorithm models were also established. For the same given data, the three reverse models can make the projection of the concentration respectively. The experimental results show that the RF algorithm predicts NO_(2)-N concentrations significantly better than the SVM algorithm and PLS algorithm. This proves that the RF algorithm has good prediction ability in spectral water quality detection because of its high model accuracy and better adaptability, which could be a reference for similar research on continuous spectral water quality online detection.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
As an effective emulator of ill-conditioned power flow,continuous Newton methods(CNMs)have been extensively investigated using explicit and implicit numerical integration algorithms.However,explicit CNMs often suffer ...As an effective emulator of ill-conditioned power flow,continuous Newton methods(CNMs)have been extensively investigated using explicit and implicit numerical integration algorithms.However,explicit CNMs often suffer from non-convergence due to their limited stability region,while implicit CNMs require additional iterative loops to solve nonlinear equations.To address this,we propose a semi-implicit version of CNM.We formulate the power flow equations as a set of differential algebraic equations(DAEs),and solve the DAEs with the stiffly accurate Rosenbrock type method(SARM).The proposed method succeeds the numerical robustness from the implicit CNM framework while prevents the iterative solution of nonlinear systems,hence revealing higher convergence speed and computation efficiency.We develop a novel 4-stage,3rd-order hyper-stable SARM with an embedded 2nd-order formula for adaptive step size control.This design enhances convergence through damping adjustment.Case studies on ill-conditioned systems verify the alleged performance.An algorithm extension for MATPOWER is made available on Github for benchmarking.展开更多
A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to...A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to the zero point.展开更多
It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved...It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved effectively in the ficld of statics.In this paper,the fail-safe topology optimization problem is extended to the field of frequency topology optimization.Based on the independent continuous mapping(ICM)method,the model of fail-safe topology optimization is established with the objective of minimal weight integrating with the discrete condition of topological variables and the constraint of the fundamental frequency.The fail-safe optimization model established above is substituted by a sequence of subproblems in the form of the quadratic program with exact second-order information and solved efficiently by the dual sequence quadratic programming(DSQP)algorithm.The numerical result reveals that the optimized fail-safe structure has more complex configuration and preserved materials than the structure obtained from the traditional frequency topology optimization,which means that the optimized fail-safe structure has higher redundancy.Moreover,the optimized fail-safe structure guarantees that the natural frequency meets the constraint of fundamental frequency when the local failure ocurs,which can avoid the structural frequency to be sensitive to local failure.The fail-safe optimirzation topology model is proved effective and feasible by four numerical examples.展开更多
This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the c...This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.展开更多
Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Usin...Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Using this method all forward solutions of a new parallel robot model which was put forward lately by Robot Open Laboratory of Science Institute of China were obtained. Therefore it provided the basis of mechanism analysis and real-time control for new model.展开更多
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr...During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large c...A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large convergence domain is given. Finally, a numerical example is given.展开更多
In this paper we present a homotopy continuation method for finding the Karush-Kuhn-Tucker point of a class of nonlinear non-convex programming problems. Two numerical examples are given to show that this method is ef...In this paper we present a homotopy continuation method for finding the Karush-Kuhn-Tucker point of a class of nonlinear non-convex programming problems. Two numerical examples are given to show that this method is effective. It should be pointed out that we extend the results of Lin et al. (see Appl. Math. Comput., 80(1996), 209-224) to a broader class of non-convex programming problems.展开更多
Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the ...On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the analogue method, because the membrane effect was not omitted during the ending deployment process of the radial rib antenna. The expressions of the bar element’s section area and density were obtained, while the expression of the stress state during the ending deployment process of antenna was attained. During the establishment process of the analogue method, the analysis method of the net shell structure was employed. Moreover, during the backward deduction of membrane stress, the continuation method was adopted. Because the expression of the membrane stress state can realize the analysis on the antenna membrane state, this research has great significance of theoretical direction to the normal operation of the space deployable antenna.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
文摘In energy industries, it is always of difficulty to produce high heat value(HHV) gas continuously using pulverized coal. In this paper, a new type furnace for partitioned alternative gasification using pulverized coal is developed, in which the oxidation and reduction reaction occur alternatively with the dropping of pulverized coal and finally HHV gas could be continuously obtained at the reduction zone exit and low heat value(LHV) gas at the oxidation zone exit. Furthermore, the gasification characteristics and their factors in furnace are numerically simulated under two dimensional model with a self-coded program, based on heat, mass and energy transfer as well as reaction principles. It is found that the producing rate of HHV gas is 1.10Nm3/kg with heat value of ll.72MJ/Nm3, how- ever, that of LHV gas is 2.58Nm3/kg with heat value of 5.30MJ/Nm3, and the coal gas efficiency is 81.16% under optimized conditions.
基金This work was supported by the National Natural Science Foundation of China(11872080)Beijing Natural Science Foundation(3192005).
文摘Fatigue failure is a common failure mode under the action of cyclic loads in engineering applications,which often occurs with no obvious signal.The maximum structural stress is far below the allowable stress when the structures are damaged.Aiming at the lightweight structure,fatigue topology optimization design is investigated to avoid the occurrence of fatigue failure in the structural conceptual design beforehand.Firstly,the fatigue life is expressed by topology variables and the fatigue life filter function.The continuum fatigue optimization model is established with the independent continuous mapping(ICM)method.Secondly,fatigue life constraints are transformed to distortion energy constraints explicitly by taking advantage of the distortion energy theory.Thirdly,the optimization formulation is solved by the dual sequence quadratic programming(DSQP).And the design scheme of lightweight structure considering the fatigue characteristics is obtained.Finally,numerical examples illustrate the practicality and effectiveness of the fatigue optimization method.This method further expands the theoretical application of the ICM method and provides a novel approach for the fatigue optimization problem.
基金supported by the Shanghai Municipal Natural Science Foundation(No.13ZR1415700)
文摘In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopts time-averaged aerodynamic coefficients as objective functions is presented. The time-accurate continuous adjoint equation and its boundary conditions are derived. The flow field and the adjoint equation are simulated numerically by the finite volume method (FVM). Feasibility and accuracy of the approach are perfectly validated by the design optimization results of the plunging NACA0012 airfoil.
基金Project supported by the National Natural Science Foundation of China (No.10471038)
文摘By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudo- symplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agree-ment with theory.
基金supported by the National Natural Science Foundation of China (No.51205005)the Beijing Science and Technology Innovation Service Ability Building (No.PXM2017-014212-000013)。
文摘It's common to use the method of continuous spectroscopy in water quality testing. But there're some problems with it. For example, the scanning results have a large number of nonlinear signals, and the covariance between variables is serious, which can lead to a decrease in the model prediction accuracy. In this paper, the standard solutions of nitrate nitrogen(NO_(3)-N) and nitrite nitrogen(NO_(2)-N) were used as the subject to be tested, and the data of the scanned waves and absorbance were obtained by use of spectral detector. The data were processed by noise reduction first and then the random forest(RF) algorithm was adopted to establish the regression relationship between concentration and absorbance. For comparison, partial least squares(PLS) and support vector machine(SVM) algorithm models were also established. For the same given data, the three reverse models can make the projection of the concentration respectively. The experimental results show that the RF algorithm predicts NO_(2)-N concentrations significantly better than the SVM algorithm and PLS algorithm. This proves that the RF algorithm has good prediction ability in spectral water quality detection because of its high model accuracy and better adaptability, which could be a reference for similar research on continuous spectral water quality online detection.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202318547A-3-2-ZN).
文摘As an effective emulator of ill-conditioned power flow,continuous Newton methods(CNMs)have been extensively investigated using explicit and implicit numerical integration algorithms.However,explicit CNMs often suffer from non-convergence due to their limited stability region,while implicit CNMs require additional iterative loops to solve nonlinear equations.To address this,we propose a semi-implicit version of CNM.We formulate the power flow equations as a set of differential algebraic equations(DAEs),and solve the DAEs with the stiffly accurate Rosenbrock type method(SARM).The proposed method succeeds the numerical robustness from the implicit CNM framework while prevents the iterative solution of nonlinear systems,hence revealing higher convergence speed and computation efficiency.We develop a novel 4-stage,3rd-order hyper-stable SARM with an embedded 2nd-order formula for adaptive step size control.This design enhances convergence through damping adjustment.Case studies on ill-conditioned systems verify the alleged performance.An algorithm extension for MATPOWER is made available on Github for benchmarking.
基金This work is partially supported by D.G.E.S. PB 96-1338-CO2-01 and the Junta de Andalucla.
文摘A sufficient condition is given to assert that a continuous mapping between Rm and Rn has a zero. The constructive proof of the result is based upon continuation methods and supplies the existence of a path leading to the zero point.
基金the National Natural Science Foundation of China(Grant 11872080).
文摘It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved effectively in the ficld of statics.In this paper,the fail-safe topology optimization problem is extended to the field of frequency topology optimization.Based on the independent continuous mapping(ICM)method,the model of fail-safe topology optimization is established with the objective of minimal weight integrating with the discrete condition of topological variables and the constraint of the fundamental frequency.The fail-safe optimization model established above is substituted by a sequence of subproblems in the form of the quadratic program with exact second-order information and solved efficiently by the dual sequence quadratic programming(DSQP)algorithm.The numerical result reveals that the optimized fail-safe structure has more complex configuration and preserved materials than the structure obtained from the traditional frequency topology optimization,which means that the optimized fail-safe structure has higher redundancy.Moreover,the optimized fail-safe structure guarantees that the natural frequency meets the constraint of fundamental frequency when the local failure ocurs,which can avoid the structural frequency to be sensitive to local failure.The fail-safe optimirzation topology model is proved effective and feasible by four numerical examples.
文摘This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.
文摘Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Using this method all forward solutions of a new parallel robot model which was put forward lately by Robot Open Laboratory of Science Institute of China were obtained. Therefore it provided the basis of mechanism analysis and real-time control for new model.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
文摘A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large convergence domain is given. Finally, a numerical example is given.
文摘In this paper we present a homotopy continuation method for finding the Karush-Kuhn-Tucker point of a class of nonlinear non-convex programming problems. Two numerical examples are given to show that this method is effective. It should be pointed out that we extend the results of Lin et al. (see Appl. Math. Comput., 80(1996), 209-224) to a broader class of non-convex programming problems.
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
基金Sponsored by the National Natural Science Foundation of China(Grant No.19682003)
文摘On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the analogue method, because the membrane effect was not omitted during the ending deployment process of the radial rib antenna. The expressions of the bar element’s section area and density were obtained, while the expression of the stress state during the ending deployment process of antenna was attained. During the establishment process of the analogue method, the analysis method of the net shell structure was employed. Moreover, during the backward deduction of membrane stress, the continuation method was adopted. Because the expression of the membrane stress state can realize the analysis on the antenna membrane state, this research has great significance of theoretical direction to the normal operation of the space deployable antenna.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.