期刊文献+
共找到1,227篇文章
< 1 2 62 >
每页显示 20 50 100
Machine Learning-Based Online Monitoring and Closed-Loop Controlling for 3D Printing of Continuous Fiber-Reinforced Composites 被引量:1
1
作者 Xinyun Chi Jiacheng Xue +6 位作者 Lei Jia Jiaqi Yao Huihui Miao Lingling Wu Tengfei Liu Xiaoyong Tian Dichen Li 《Additive Manufacturing Frontiers》 2025年第2期90-96,共7页
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa... Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments. 展开更多
关键词 continuous fiber-reinforced composites 3D printing Computer vision Machine learning Defect detection Feedback control
在线阅读 下载PDF
AdaptForever:Elastic and Mutual Learning for Continuous NLP Task Mastery
2
作者 Ke Chen Cheng Peng +4 位作者 Xinyang He Jiakang Sun Xu Liu Xiaolin Qin Yong Zhong 《Computers, Materials & Continua》 2025年第3期4003-4019,共17页
In natural language processing(NLP),managing multiple downstream tasks through fine-tuning pre-trained models often requires maintaining separate task-specific models,leading to practical inefficiencies.To address thi... In natural language processing(NLP),managing multiple downstream tasks through fine-tuning pre-trained models often requires maintaining separate task-specific models,leading to practical inefficiencies.To address this challenge,we introduce AdaptForever,a novel approach that enables continuous mastery of NLP tasks through the integration of elastic and mutual learning strategies with a stochastic expert mechanism.Our method freezes the pre-trained model weights while incorporating adapters enhanced with mutual learning capabilities,facilitating effective knowledge transfer from previous tasks to new ones.By combining Elastic Weight Consolidation(EWC)for knowledge preservation with specialized regularization terms,AdaptForever successfully maintains performance on earlier tasks while acquiring new capabilities.Experimental results demonstrate that AdaptForever achieves superior performance across a continuous sequence of NLP tasks compared to existing parameter-efficient methods,while effectively preventing catastrophic forgetting and enabling positive knowledge transfer between tasks. 展开更多
关键词 Adapter-tuning large language model pre-trained language model parameter-efficient fine tuning continue learning mutual learning mixture of expert
在线阅读 下载PDF
Continuous Bayesian probability estimator in predictions of nuclear charge radii
3
作者 Jian Liu Kai-Zhong Tan +4 位作者 Lei Wang Wan-Qing Gao Tian-Shuai Shang Jian Li Chang Xu 《Nuclear Science and Techniques》 2025年第11期283-293,共11页
Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator ... Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator and Bayesian model averaging(BMA)to optimize the predictions of RCfrom sophisticated theoretical models.The CBP estimator treats the residual between the theoretical and experimental values of RCas a continuous variable and derives its posterior probability density function(PDF)from Bayesian theory.The BMA method assigns weights to models based on their predictive performance for benchmark nuclei,thereby accounting for the unique strengths of each model.In global optimization,the CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%.The extrapolation analyses consistently achieved an improvement rate of approximately 45%,demonstrating the robustness of the CBP estimator.Furthermore,the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm,effectively reproducing the pronounced shell effects on RCof the Ca and Sr isotope chains.The studies in this paper propose an efficient method to accurately describe RCof unknown nuclei,with potential applications in research on other nuclear properties. 展开更多
关键词 Machine learning Nuclear charge radii continuous Bayesian probability estimator Bayesian model averaging
在线阅读 下载PDF
Deep learning algorithm featuring continuous learning for modulation classifications in wireless networks
4
作者 WU Nan SUN Yu WANG Xudong 《太赫兹科学与电子信息学报》 2024年第2期209-218,共10页
Although modulation classification based on deep neural network can achieve high Modulation Classification(MC)accuracies,catastrophic forgetting will occur when the neural network model continues to learn new tasks.In... Although modulation classification based on deep neural network can achieve high Modulation Classification(MC)accuracies,catastrophic forgetting will occur when the neural network model continues to learn new tasks.In this paper,we simulate the dynamic wireless communication environment and focus on breaking the learning paradigm of isolated automatic MC.We innovate a research algorithm for continuous automatic MC.Firstly,a memory for storing representative old task modulation signals is built,which is employed to limit the gradient update direction of new tasks in the continuous learning stage to ensure that the loss of old tasks is also in a downward trend.Secondly,in order to better simulate the dynamic wireless communication environment,we employ the mini-batch gradient algorithm which is more suitable for continuous learning.Finally,the signal in the memory can be replayed to further strengthen the characteristics of the old task signal in the model.Simulation results verify the effectiveness of the method. 展开更多
关键词 Deep learning(DL) modulation classification continuous learning catastrophic forgetting cognitive radio communications
在线阅读 下载PDF
Toward real-world deployment of machine learning for health care:External validation,continual monitoring,and randomized clinical trials 被引量:3
5
作者 Han Yuan 《Health Care Science》 2024年第5期360-364,共5页
1|OVERVIEW.Machine learning(ML)has been increasingly used for tackling various diagnostic,therapeutic,and prognostic tasks owing to its capability to learn and reason without explicit programming[1].Most developed ML ... 1|OVERVIEW.Machine learning(ML)has been increasingly used for tackling various diagnostic,therapeutic,and prognostic tasks owing to its capability to learn and reason without explicit programming[1].Most developed ML models have had their accuracy proven through internal validation using retrospective data.However,external validation using retrospective data,continual monitoring using prospective data,and randomized controlled trials(RCTs)using prospective data are important for the translation of ML models into real-world clinical practice[2]. 展开更多
关键词 machine learning real-world deployment external validation continual monitoring randomized clinical trials
暂未订购
Iterative Learning Model Predictive Control for a Class of Continuous/Batch Processes 被引量:9
6
作者 周猛飞 王树青 +1 位作者 金晓明 张泉灵 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期976-982,共7页
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ... An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes. 展开更多
关键词 continuous/batch process model predictive control event monitoring iterative learning soft constraint
在线阅读 下载PDF
Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes
7
作者 Zhaoan Wang Kishlay Jha Shaoping Xiao 《Computers, Materials & Continua》 SCIE EI 2024年第10期1319-1336,共18页
Climate change poses significant challenges to agricultural management,particularly in adapting to extreme weather conditions that impact agricultural production.Existing works with traditional Reinforcement Learning(... Climate change poses significant challenges to agricultural management,particularly in adapting to extreme weather conditions that impact agricultural production.Existing works with traditional Reinforcement Learning(RL)methods often falter under such extreme conditions.To address this challenge,our study introduces a novel approach by integrating Continual Learning(CL)with RL to form Continual Reinforcement Learning(CRL),enhancing the adaptability of agricultural management strategies.Leveraging the Gym-DSSAT simulation environment,our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions.By incorporating CL algorithms,such as Elastic Weight Consolidation(EWC),with established RL techniques like Deep Q-Networks(DQN),we developed a framework in which agents can learn and retain knowledge across diverse weather scenarios.The CRL approach was tested under climate variability to assess the robustness and adaptability of the induced policies,particularly under extreme weather events like severe droughts.Our results showed that continually learned policies exhibited superior adaptability and performance compared to optimal policies learned through the conventional RL methods,especially in challenging conditions of reduced rainfall and increased temperatures.This pioneering work,which combines CL with RL to generate adaptive policies for agricultural management,is expected to make significant advancements in precision agriculture in the era of climate change. 展开更多
关键词 Continual learning reinforcement learning agricultural management climate variability
在线阅读 下载PDF
Relational Reinforcement Learning with Continuous Actions by Combining Behavioural Cloning and Locally Weighted Regression 被引量:2
8
作者 Julio H. Zaragoza Eduardo F. Morales 《Journal of Intelligent Learning Systems and Applications》 2010年第2期69-79,共11页
Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms are unable to handle large amounts of data coming from the robot’s sensors, require long training ti... Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms are unable to handle large amounts of data coming from the robot’s sensors, require long training times, and use dis-crete actions. This work introduces TS-RRLCA, a two stage method to tackle these problems. In the first stage, low-level data coming from the robot’s sensors is transformed into a more natural, relational representation based on rooms, walls, corners, doors and obstacles, significantly reducing the state space. We use this representation along with Behavioural Cloning, i.e., traces provided by the user;to learn, in few iterations, a relational control policy with discrete actions which can be re-used in different environments. In the second stage, we use Locally Weighted Regression to transform the initial policy into a continuous actions policy. We tested our approach in simulation and with a real service robot on different environments for different navigation and following tasks. Results show how the policies can be used on different domains and perform smoother, faster and shorter paths than the original discrete actions policies. 展开更多
关键词 RELATIONAL REINFORCEMENT learning BEHAVIOURAL clONING continuous ACTIONS Robotics
暂未订购
基于机器学习与进化算法的CL-20/TNT新共晶结构探索
9
作者 宋云岳 李明 《广东化工》 2025年第2期110-112,128,共4页
对于高能量密度化合物2,4,6,8,10,12-六硝基-2,4,6,8,10,12六氮杂异伍兹烷(CL-20)因灵敏度过高而不能广泛应用的问题,可利用共晶技术将它与常见的高能量密度化合物结合形成高能共晶材料来降低灵敏度。对此提出了一个高效的迭代工作流程... 对于高能量密度化合物2,4,6,8,10,12-六硝基-2,4,6,8,10,12六氮杂异伍兹烷(CL-20)因灵敏度过高而不能广泛应用的问题,可利用共晶技术将它与常见的高能量密度化合物结合形成高能共晶材料来降低灵敏度。对此提出了一个高效的迭代工作流程,利用了机器学习势(MLP)和来自USPEX的进化算法探索CL-20与2,4,6-三硝基甲苯(TNT)共晶空间。通过该工作流程,得到了一组高密度共晶结构,并利用第一性原理几何优化进一步验证了这些共晶结构。 展开更多
关键词 机器学习 进化算法 cl-20 TNT 共晶结构
在线阅读 下载PDF
Machine-Learning-Improved Analytic Continuation for Quantum Impurity Model
10
作者 Shengyan Li Liang Chen 《Journal of Harbin Institute of Technology(New Series)》 2025年第4期29-44,共16页
The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism,specifically the Green's functions,and physical measurements(the spectral functions)in real... The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism,specifically the Green's functions,and physical measurements(the spectral functions)in real time.Various approaches have been developed to enhance the accuracy of analytic continuation,including the Padéapproximation,the maximum entropy method,and stochastic analytic continuation.In this study,we employ different deep learning techniques to investigate the analytic continuation for the quantum impurity model.A significant challenge in this context is that the sharp Abrikosov-Suhl resonance peak may be either underestimated or overestimated.We fit both the imaginary-time Green's function and the spectral function using Chebyshev polynomials in logarithmic coordinates.We utilize Full-Connected Networks(FCN),Convolutional Neural Networks(CNNs),and Residual Networks(ResNet)to address this issue.Our findings indicate that introducing noise during the training phase significantly improves the accuracy of the learning process.The typical absolute error achieved is less than 10-4.These investigations pave the way for machine learning to optimize the analytic continuation problem in many-body systems,thereby reducing the need for prior expertise in physics. 展开更多
关键词 machine learning analytic continuation neural networks
在线阅读 下载PDF
Subgraph Matching on Multi-Attributed Graphs Based on Contrastive Learning
11
作者 LIU Bozhi FANG Xiu +1 位作者 SUN Guohao LU Jinhu 《Journal of Donghua University(English Edition)》 2025年第5期523-533,共11页
Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challen... Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model. 展开更多
关键词 subgraph matching graph neural network(GNN) multi-attributed graph contrastive learning(cl)
在线阅读 下载PDF
Squeezing More Past Knowledge for Online Class-Incremental Continual Learning 被引量:1
12
作者 Da Yu Mingyi Zhang +4 位作者 Mantian Li Fusheng Zha Junge Zhang Lining Sun Kaiqi Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期722-736,共15页
Continual learning(CL)studies the problem of learning to accumulate knowledge over time from a stream of data.A crucial challenge is that neural networks suffer from performance degradation on previously seen data,kno... Continual learning(CL)studies the problem of learning to accumulate knowledge over time from a stream of data.A crucial challenge is that neural networks suffer from performance degradation on previously seen data,known as catastrophic forgetting,due to allowing parameter sharing.In this work,we consider a more practical online class-incremental CL setting,where the model learns new samples in an online manner and may continuously experience new classes.Moreover,prior knowledge is unavailable during training and evaluation.Existing works usually explore sample usages from a single dimension,which ignores a lot of valuable supervisory information.To better tackle the setting,we propose a novel replay-based CL method,which leverages multi-level representations produced by the intermediate process of training samples for replay and strengthens supervision to consolidate previous knowledge.Specifically,besides the previous raw samples,we store the corresponding logits and features in the memory.Furthermore,to imitate the prediction of the past model,we construct extra constraints by leveraging multi-level information stored in the memory.With the same number of samples for replay,our method can use more past knowledge to prevent interference.We conduct extensive evaluations on several popular CL datasets,and experiments show that our method consistently outperforms state-of-the-art methods with various sizes of episodic memory.We further provide a detailed analysis of these results and demonstrate that our method is more viable in practical scenarios. 展开更多
关键词 Catastrophic forgetting class-incremental learning continual learning(cl) experience replay
在线阅读 下载PDF
A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels 被引量:3
13
作者 Xiaoxiao Geng Xinping Mao +5 位作者 Hong-Hui Wu Shuize Wang Weihua Xue Guanzhen Zhang Asad Ullah Hao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第12期207-215,共9页
Continuous cooling transformation diagrams in synthetic weld heat-affected zone(SH-CCT diagrams)show the phase transition temperature and hardness at different cooling rates,which is an important basis for formulating... Continuous cooling transformation diagrams in synthetic weld heat-affected zone(SH-CCT diagrams)show the phase transition temperature and hardness at different cooling rates,which is an important basis for formulating the welding process or predicting the performance of welding heat-affected zone.However,the experimental determination of SH-CCT diagrams is a time-consuming and costly process,which does not conform to the development trend of new materials.In addition,the prediction of SHCCT diagrams using metallurgical models remains a challenge due to the complexity of alloying elements and welding processes.So,in this study,a hybrid machine learning model consisting of multilayer perceptron classifier,k-Nearest Neighbors and random forest is established to predict the phase transformation temperature and hardness of low alloy steel using chemical composition and cooling rate.Then the SH-CCT diagrams of 6 kinds of steels are calculated by the hybrid machine learning model.The results show that the accuracy of the classification model is up to 100%,the predicted values of the regression models are in good agreement with the experimental results,with high correlation coefficient and low error value.Moreover,the mathematical expressions of hardness in welding heat-affected zone of low alloy steel are calculated by symbolic regression,which can quantitatively express the relationship between alloy composition,cooling time and hardness.This study demonstrates the great potential of the material informatics in the field of welding technology. 展开更多
关键词 continuous cooling transformation Heat-affected zone Machine learning Symbolic regression
原文传递
Implicit Continuous User Authentication for Mobile Devices based on Deep Reinforcement Learning 被引量:1
14
作者 Christy James Jose M.S.Rajasree 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1357-1372,共16页
The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuou... The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuous authentication initiating to be loftier to conventional authentication mechanisms by continuously confirming users’identities on continuing basis and mark the instant at which an illegitimate hacker grasps dominance of the session.However,divergent issues remain unaddressed.This research aims to investigate the power of Deep Reinforcement Learning technique to implicit continuous authentication for mobile devices using a method called,Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s(GWCK-CC).First,a Gaussian Weighted Non-local Mean Filter Preprocessing model is applied for reducing the noise pre-sent in the raw input face images.Cauchy Kriging Regression function is employed to reduce the dimensionality.Finally,Continuous Czekanowski’s Clas-sification is utilized for proficient classification between the genuine user and attacker.By this way,the proposed GWCK-CC method achieves accurate authen-tication with minimum error rate and time.Experimental assessment of the pro-posed GWCK-CC method and existing methods are carried out with different factors by using UMDAA-02 Face Dataset.The results confirm that the proposed GWCK-CC method enhances authentication accuracy,by 9%,reduces the authen-tication time,and error rate by 44%,and 43%as compared to the existing methods. 展开更多
关键词 Deep reinforcement learning gaussian weighted non-local meanfilter cauchy kriging regression continuous czekanowski’s implicit continuous authentication mobile devices
在线阅读 下载PDF
A Deep Learning-Based Continuous Blood Pressure Measurement by Dual Photoplethysmography Signals 被引量:1
15
作者 Chih-Ta Yen Sheng-Nan Chang +1 位作者 Liao Jia-Xian Yi-Kai Huang 《Computers, Materials & Continua》 SCIE EI 2022年第2期2937-2952,共16页
This study proposed a measurement platform for continuous blood pressure estimation based on dual photoplethysmography(PPG)sensors and a deep learning(DL)that can be used for continuous and rapid measurement of blood ... This study proposed a measurement platform for continuous blood pressure estimation based on dual photoplethysmography(PPG)sensors and a deep learning(DL)that can be used for continuous and rapid measurement of blood pressure and analysis of cardiovascular-related indicators.The proposed platform measured the signal changes in PPG and converted them into physiological indicators,such as pulse transit time(PTT),pulse wave velocity(PWV),perfusion index(PI)and heart rate(HR);these indicators were then fed into the DL to calculate blood pressure.The hardware of the experiment comprised 2 PPG components(i.e.,Raspberry Pi 3 Model B and analog-todigital converter[MCP3008]),which were connected using a serial peripheral interface.The DL algorithm converted the stable dual PPG signals acquired from the strictly standardized experimental process into various physiological indicators as input parameters and finally obtained the systolic blood pressure(SBP),diastolic blood pressure(DBP)and mean arterial pressure(MAP).To increase the robustness of the DL model,this study input data of 100 Asian participants into the training database,including those with and without cardiovascular disease,each with a proportion of approximately 50%.The experimental results revealed that the mean absolute error and standard deviation of SBP was 0.17±0.46 mmHg.The mean absolute error and standard deviation of DBP was 0.27±0.52 mmHg.The mean absolute error and standard deviation of MAP was 0.16±0.40 mmHg. 展开更多
关键词 Deep learning(DL) blood pressure continuous non-invasive blood pressure measurement photoplethysmography(PGG)
在线阅读 下载PDF
The Application of Cooperative Learning in the Oral English Classroom
16
作者 陈惜珍 《英语广场(学术研究)》 2013年第6期67-71,共5页
外语教学的最终目标是培养学生用外语进行交际的能力。本文就"共同参与式教学法"的基本理论,探讨了"共同参与式"教学模式在英语口语课课堂的运用,指出口语课内容应符合学生的兴趣和成长需求,教学模式要以学生为中心... 外语教学的最终目标是培养学生用外语进行交际的能力。本文就"共同参与式教学法"的基本理论,探讨了"共同参与式"教学模式在英语口语课课堂的运用,指出口语课内容应符合学生的兴趣和成长需求,教学模式要以学生为中心,在培养学生运用英语进行交流的同时,也要注重培养学生的组织材料的能力、交际能力和独立思考能力。 展开更多
关键词 共同参与式教学法 英语口语课 教学内容与模式
在线阅读 下载PDF
Control Task for Reinforcement Learning with Known Optimal Solution for Discrete and Continuous Actions
17
作者 Michael C. ROTTGER Andreas W. LIEHR 《Journal of Intelligent Learning Systems and Applications》 2009年第1期28-41,共14页
The overall research in Reinforcement Learning (RL) concentrates on discrete sets of actions, but for certain real-world problems it is important to have methods which are able to find good strategies using actions dr... The overall research in Reinforcement Learning (RL) concentrates on discrete sets of actions, but for certain real-world problems it is important to have methods which are able to find good strategies using actions drawn from continuous sets. This paper describes a simple control task called direction finder and its known optimal solution for both discrete and continuous actions. It allows for comparison of RL solution methods based on their value functions. In order to solve the control task for continuous actions, a simple idea for generalising them by means of feature vectors is presented. The resulting algorithm is applied using different choices of feature calculations. For comparing their performance a simple measure is 展开更多
关键词 comparison continuous ACTIONS example problem REINFORCEMENT learning performance
暂未订购
无负采样的正样本增强图对比学习推荐方法PAGCL
18
作者 汪炅 唐韬韬 贾彩燕 《计算机应用》 CSCD 北大核心 2024年第5期1485-1492,共8页
对比学习(CL)因能够提取数据本身包含的监督信号而被广泛应用于推荐任务。最近的研究表明,CL在推荐方面的成功依赖于对比损失——互信息噪声对比估计(InfoNCE)损失带来的节点分布的均匀性。此外,另一项研究证明贝叶斯个性化排序(BPR)损... 对比学习(CL)因能够提取数据本身包含的监督信号而被广泛应用于推荐任务。最近的研究表明,CL在推荐方面的成功依赖于对比损失——互信息噪声对比估计(InfoNCE)损失带来的节点分布的均匀性。此外,另一项研究证明贝叶斯个性化排序(BPR)损失的正项与负项分别带来的对齐性和均匀性有助于提高推荐性能。由于在CL框架中对比损失能够带来比BPR负项更强的均匀性,BPR负项存在的必要性值得商榷。实验分析表明在对比框架中BPR的负项是不必要的,并基于这一观察提出了无需负采样的联合优化损失,可应用于经典的CL方法并达到相同或更高的性能。此外,与专注于提高均匀性的研究不同,为进一步加强对齐性,提出一种新颖的正样本增强的图对比学习方法(PAGCL),该方法使用随机正样本在节点表示层面进行扰动。在多个基准数据集上的实验结果表明,PAGCL在召回率及归一化折损累积增益(NDCG)这两个常用指标上均优于SOTA方法自监督图学习(SGL)、简单图对比学习(SimGCL)等,且相较于基模型轻量化图卷积(LightGCN)的NDCG@20提升最大可达17.6%。 展开更多
关键词 推荐系统 对比学习 自监督学习 图神经网络 数据增强
在线阅读 下载PDF
Effectiveness of Cooperative Learning in College English Reading Class
19
作者 冯丽娟 《海外英语》 2012年第1X期33-35,共3页
Cooperative learning emerging as the leading new approach to classroom instruction abroad over the past decades has been studied by many researchers from all aspects.This paper mainly focuses on the basics of cooperat... Cooperative learning emerging as the leading new approach to classroom instruction abroad over the past decades has been studied by many researchers from all aspects.This paper mainly focuses on the basics of cooperative learning and tries to answer the question that if the use of cooperative learning produce higher achievement than the traditional methods in college English reading class through experimental study.The analysis contributes to better college English teaching and learning.A conclusion is drawn that cooperative learning is very effective in improving college students reading ability. 展开更多
关键词 COOPERATIVE learning ESSENTIAL ELEMENTS and yypica
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部