期刊文献+
共找到391篇文章
< 1 2 20 >
每页显示 20 50 100
Effect of Structure Parameters on Power and Magnetic Field in Electromagnetic Soft-Contact Continuous Casting System 被引量:5
1
作者 DENG An-yuan WANG En-gang HE Ji-cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第1期19-24,共6页
To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure paramet... To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively. 展开更多
关键词 continuous casting soft-contact mold electromagnetic field electric power structure parameter
原文传递
Optimizing cooling approach of spiral coil for an electromagnetic steel teeming system of ladle in continuous casting production
2
作者 Ming He Qing-wei Wang +3 位作者 Li-jia Zhao Wang-zhong Mu Xing-an Liu Qiang Wang 《Journal of Iron and Steel Research International》 2025年第1期85-94,共10页
To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Co... To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process. 展开更多
关键词 Electromagnetic induction controlled automated steel teeming technology Spiral coil Spray cooling Heat transfer continuous casting
原文传递
Design and Simulation Test of Advanced Secondary Cooling Control System of Continuous Casting Based on Fuzzy Self-Adaptive PID 被引量:11
3
作者 LIU Wen-hong XIE Zhi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第1期26-30,共5页
To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant c... To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the superheat is introduced into the water distribution for secondary cooling to design the relevant control system, based on the water distribution model, superheat and fuzzy self-adaptive PID (process identity) . A spray cooling system is set up for simulation test in laboratory to test the step signal from the conventional, integral sepa rated and fuzzy self-adaptive PID controllers and the simulation casting. And the on-site test is done in some steel plant. The test results show that the fuzzy self-adaptive PID controller's performance is better than that of the other two controllers, which provides a basis for further study and application. 展开更多
关键词 fuzzy self-adaptive PID continuous casting secondary cooling SUPERHEAT
原文传递
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
4
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
Application of Hot Strength and Ductility Test to Optimization of Secondary Cooling System in Billet Continuous Casting Process 被引量:4
5
作者 WANG Biao JI Zhen-ping +2 位作者 LIU Wen-hong MA Jiao-cheng XIE Zhi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第4期16-20,共5页
By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The tes... By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700 ℃ to solidification point; the first temperature region of brittleness is 1 300 ℃ to solidification point of the billet, the second temperature region of brittleness is 1 200-- 1 000 ℃, and the third temperature region of brittleness is 700-850 ℃ ; the steel is plastic at 850--1 000 ℃. The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined. With optimized process, the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process. The conic relation of water distribution between secondary cooling water flux and casting speed is regressed. Keeping the surface temperature of billet before the straightening point above 1 000 ℃, the results of billet test indicate that there is free central shrinkage cavity. The billet defect is decreased greatly, and the quality of billet is obviously improved. 展开更多
关键词 continuous casting billet brittle temperature zone tensile strength secondary cooling SIMULATION
原文传递
Elastodynamic analysis of synergistic oscillation system driven by double servomotors for continuous casting mold 被引量:1
6
作者 Da-wei Liu Chen Lv +1 位作者 Jin-ming Zhang Xin Jin 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第1期115-123,共9页
Based on the principle of speed superposition,the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capac... Based on the principle of speed superposition,the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capacity.The elastodynamic model of the oscillation system was presented to analyze the oscillation characteristics affected by multiple parameters.Firstly,the working principle of the system was illustrated,with the kinematic model of the system given.Considering the elastic deformation of mechanical components,the lumped parameter method was used to establish the equivalent component and elastodynamic model of the oscillation system.Based on Runge–Kutta method,the oscillation response of the system was calculated.The validity of the elastodynamic model was validated by comparing the simulated solution and experimental data,and the oscillation characteristics of the system were analyzed emphatically with model parameters.The results showed that the first three harmonic frequencies of the eccentric shafts are the main cause of harmonic resonance,which has a strong relationship with the system error.The increase in the fluctuation coefficients and the decrease in the phase difference enhanced the elastic oscillation of the system.System elastic error tends to show linear growth with the increase in the friction force of the slab. 展开更多
关键词 continuous casting MOLD Non-sinusoidal oscillation Elastic response
原文传递
Electromagnetic swirling flow control in nozzle in slab continuous casting
7
作者 Xiao-wei Zhu Xian-cun Liu +5 位作者 Li-jia Zhao De-wei Li Chen Tian Kai Wang Bai-gang Jin Qiang Wang 《Journal of Iron and Steel Research International》 2025年第4期935-949,共15页
The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic for... The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity. 展开更多
关键词 Electromagnetic swirling flow Submerged entry nozzle continuous casting Flow stabilization Meniscus fluctuation Impact depth Flow symmetry
原文传递
Microstructure,mechanical properties,and formability of 1030B Al strip manufactured by ultrasound-assisted continuous casting direct rolling
8
作者 Li ZHANG Xiao-qian LI +4 位作者 Shang GE Guan HUANG Ri-peng JIANG Jing-pei XIE Shao-kang GUAN 《Transactions of Nonferrous Metals Society of China》 2025年第5期1381-1393,共13页
The microstructure and properties of a 1030B Al strip were improved by applying ultrasonic melt treatment(UMT)in a Hazelett continuous casting direct rolling production line.The microstructure and properties of the 10... The microstructure and properties of a 1030B Al strip were improved by applying ultrasonic melt treatment(UMT)in a Hazelett continuous casting direct rolling production line.The microstructure and properties of the 1030B Al strip were investigated by scanning electron microscopy,electron backscatter diffraction,and tensile testing.Applying UMT reduced the average grain size of the as-cast sheet by more than 28.0%with respect to that of the normal samples without UMT.When UMT was applied,the rolled strip inherited the refined grains from the as-cast sheet with an average grain size smaller than 63.0μm.Meanwhile,the dislocation density was increased by the grain refinement,dynamic recovery,and recrystallization during rolling.Accordingly,the strain-hardening rates of the rolled samples after UMT were generally higher than those of the normal samples,and the strength of the rolled strip was also improved.Furthermore,the rolled strip exhibited better formability with higher strain-hardening exponents and Erichsen index values. 展开更多
关键词 grain refinement mechanical properties FORMABILITY continuous casting direct rolling ultrasonic melt treatment 1030B Al
在线阅读 下载PDF
Precipitation behavior and its effect on surface transverse cracks during continuous casting
9
作者 Peng Lan Yi-fan Lu +2 位作者 Ying-chun Wang Li-rui Zhang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第3期519-535,共17页
Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of ... Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of the final product. Based on previous investigation, the precipitation sequence and temperature, position and mode, as well as the size, morphology, and number of different types of precipitates were reviewed. The effects of C, N, Nb, Ti, and V on the precipitation behavior and surface transverse cracks in continuous casting slabs were summarized, with a particular emphasis on the new achievements concerning Ti addition. The critical amounts of different elements to avoid serious surface cracks during continuous casting were proposed. The control mechanisms and industrial effects of composition optimization, cooling design, and chamfered mold configuration to improve surface transverse cracks in continuous casting slabs were also illustrated, and the recent application of surface microstructure control technology was emphasized. The characteristics, advantages, and shortcomings of existing theoretical and experimental methods in investigating continuous casting surface cracks regarding precipitation are finally discussed, and a new setup with advanced functions is introduced. 展开更多
关键词 Microalloyed steel Surface transverse crack PRECIPITATION Hot ductility continuous casting
原文传递
Soft reduction control investigation of spot segregation in continuous casting bloom for 42CrMoA crankshaft steel
10
作者 Hai-jie Wang Ze Zhang +4 位作者 De-guo Fan Chuan-hui Jiang Bin-bin Zhang Pu Wang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第3期695-706,共12页
The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel i... The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products. 展开更多
关键词 continuous casting Soft reduction Spot segregation Solute distribution Improvement mechanism
原文传递
Cracking tendency induced by precipitated phases in S32654 continuous casting slab
11
作者 Hong-chun Zhu Rui Zhang +6 位作者 Hua-bing Li Yu-jie Zheng Zhou-hua Jiang Zhuo-wen Ni Zhi-yu He Hao Feng Shu-cai Zhang 《Journal of Iron and Steel Research International》 2025年第11期3847-3859,共13页
A mathematical model coupling flow,solidification,strain-stress,and interface failure was developed.Following identification of crack source type through thermal tensile experiment and validation by strain-stress comp... A mathematical model coupling flow,solidification,strain-stress,and interface failure was developed.Following identification of crack source type through thermal tensile experiment and validation by strain-stress comparison,the model was used to investigate slab cracking tendency near precipitated phases,considering various locations,sizes and shapes of them.The results show that the jet from submerged entry nozzle creates a“double roll”flow pattern during continuous casting,resulting in more uniform temperature distributions at slab corner and wide surface center compared with narrow surface center.Consequently,precipitated phases,particularly those located on the narrow surface,readily induce stress concentration and thus increase cracking tendency.A smaller precipitated phase size can reduce the stress concentration zone,while a more spherical shape can distribute surrounding stress along its surface and lower the internal stress within it,thereby decreasing the risk of slab cracking during continuous casting.The optimal precipitated phase exhibits a spherical or ellipsoidal shape with a major axis of less than 5µm,minimizing its potential to initiate cracks. 展开更多
关键词 Cracking tendency SOLIDIFICATION Slab continuous casting Numerical simulation Precipitated phase
原文传递
Development and application of mold flux for high-speed continuous casting of high-carbon steel billets
12
作者 Yang-yang Shen Wei Yan +5 位作者 Xin-yu Zhao Shou-jie Chen Cheng-bin Shi Cheng-wei Yang Kun-peng Wang Yong-yuan Wang 《Journal of Iron and Steel Research International》 2025年第9期2794-2807,共14页
High-carbon steel billets(>0.6%C)face challenges in achieving high production efficiency due to the limitations imposed by low casting speeds compared to low-and medium-carbon steels.To address this issue and enabl... High-carbon steel billets(>0.6%C)face challenges in achieving high production efficiency due to the limitations imposed by low casting speeds compared to low-and medium-carbon steels.To address this issue and enable high-speed continuous casting(3.0–3.5 m/min)of high-carbon steel billets with dimensions of 160 mm×160 mm,an integrated research approach focusing on the development and application of mold flux was undertaken.A theoretical analysis of the solidification characteristics of high-carbon steel was proposed,identifying the specific property requirements for mold flux at elevated casting speeds.Following this,a machine learning algorithm-based prediction software,©IMoldFlux,was developed to predict viscosity and melting temperature of mold flux.This software was used in conjunction with the single high-temperature thermocouple technique for crystallization test to facilitate the chemical design of the mold flux.Concurrently,the effects of various carbonaceous materials and their blend ratios on the melting rate and sintering performance of the mold flux were examined to achieve optimal carbon matching.Ultimately,the developed mold flux was successfully applied in the continuous casting of high-carbon steel billets(~0.7%C)with dimensions of 160 mm×160 mm at a speed of 3.2 m/min.This application resulted in the elimination of deep and irregular oscillation marks as well as longitudinal cracks,leading to a significant improvement in surface quality of high-carbon steel billets. 展开更多
关键词 High-carbon steel High-speed continuous casting Mold flux Property prediction Surface quality
原文传递
A kinetic model for austenite grain growth during continuous casting considering massive type peritectic transformation
13
作者 Peng Lan Hua-song Liu Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第4期920-934,共15页
The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient... The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting. 展开更多
关键词 Austenite grain growth continuous casting Massive type transformation Kinetic model Peritectic steel
原文传递
Effect of Ti carbonitride on hot ductility of Ti microalloy steel during continuous casting
14
作者 Tian-ci Chen Cheng Ji Miao-yong Zhu 《Journal of Iron and Steel Research International》 2025年第10期3355-3369,共15页
High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting... High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting.An equivalent austenite diameter was proposed,taking into account the weakening effects of proeutectoid ferrite films and Ti carbonitride precipitation.Based on this,a hot ductility prediction model for the slab was established to investigated hot ductility.The results show that as Ti content increases,the hot ductility of Ti microalloy steel initially increases and then decreases.At low Ti content,the pinning effect of Ti carbonitrides increases with the increase in Ti content,which inhibits grain coarsening for improving hot ductility.As Ti content increases,the size of carbonitrides grows,weakening the pinning effect and leading to austenite grain coarsening.Simultaneously,the formation of Ti carbonitrides inhibits proeutectoid ferrite film formation,leading to a reduction in its thickness.These combined factors reduce the hot ductility of the continuous casting steel.According to the hot ductility prediction model,in order of severity,the factors affecting hot ductility are:proeutectoid ferrite film,chain-like nanoscale Ti carbonitrides,austenite grain size,and dispersed nanoscale Ti carbonitrides.An accuracy error of less than 10%is shown by the model. 展开更多
关键词 Ti microalloy steel Ti carbonitride High temperature tension Hot ductility prediction continuous casting
原文传递
Grain growth kinetics model of high-temperature ferrite and austenite in Ti microalloyed steel during continuous casting
15
作者 Tianci Chen Cheng Ji +2 位作者 Jianhua Yang Yunguang Chi Miaoyong Zhu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1390-1403,共14页
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model... The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%. 展开更多
关键词 Ti microalloyed steel slab continuous casting phase transfer Ti carbonitrides austenite growth kinetics
在线阅读 下载PDF
Melt flow, heat transfer and solidification in bloom continuous casting with combined vertical linear electromagnetic stirring and rotary electromagnetic stirring
16
作者 Ze-peng Wang En-gang Wang Zhong-xin Zhai 《Journal of Iron and Steel Research International》 2025年第4期950-960,共11页
An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-... An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-LEMS were investigated by establishing a three-dimensional numerical simulation model and a pilot continuous casting simulation experiment and compared with the conventional rotary electromagnetic stirring(REMS).The results show that a longitudinally symmetric linear magnetic field is formed in the liquid core of the bloom by applying CV-LEMS,which induces a strong longitudinal circulation flow both on the inner arc side and the outer arc side in the liquid core of the bloom.The height of the melt longitudinal effective mixing range under CV-LEMS reaches 0.9 m,which is greater than that of the REMS and makes up for the deficiency of REMS sensitivity to the position of the final solidification zone.CV-LEMS strongly promotes the mixing of upper melt with high temperature and the lower part melt with low temperature in the liquid core,improves the uniformity of melt temperature distribution and significantly increases the melt temperature near the solidification front,and the width of the liquid core increases by 4.2 mm at maximum.This shows that the appliction of CV-LEMS is more helpful to strengthen the feeding effect of the upper melt to the solidification shrinkage of the lower melt than the conventional REMS and inhibits the formation of porosity,shrinkage cavity and crack defects in the center of the bloom. 展开更多
关键词 Combined vertical linear electromagnetic stirring Final rotary electromagnetic stirring Longitudinal circulation flow Feeding ability Bloom continuous casting
原文传递
Research on the anti-disturbance issues of the breakout prediction system in continuous casting
17
作者 TAN Yan LI Cunlin 《Baosteel Technical Research》 CAS 2009年第3期51-53,共3页
This paper introduces the function, structure and alarm principles of the breakout prediction system installed for continuous casting in Baosteel' s No. 2 Steelmaking Plant. It elaborates on four parameters in the al... This paper introduces the function, structure and alarm principles of the breakout prediction system installed for continuous casting in Baosteel' s No. 2 Steelmaking Plant. It elaborates on four parameters in the alarm logic,including the temperature changing rate, temperature difference, temperature fluctuation and temperature match of thermocouples. This paper also explains the causes of different disturbances within the breakout prediction system, and the methods used to prevent and eliminate disturbances from radiation, earth, crosstalk, temperature drift and time drift. Finally, the paper summarizes some potential applications of the above technology. 展开更多
关键词 continuous casting breakout prediction ANTI-DISTURBANCE radiation EARTH CROSSTALK
在线阅读 下载PDF
Solidification of horizontally continuous casting of super-thin slab in stable magnetic field and alternating current 被引量:5
18
作者 张小伟 黄锦峰 +1 位作者 邓康 任忠鸣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期196-201,共6页
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ... The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab. 展开更多
关键词 horizontally continuous casting(HCC) super-thin slab electromagnetic vibration(EMV) SOLIDIFICATION
在线阅读 下载PDF
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
19
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
在线阅读 下载PDF
Horizontal continuous casting process under electromagnetic field for preparing AA3003/AA4045 clad composite hollow billets 被引量:11
20
作者 武立 康慧君 +2 位作者 陈宗宁 刘宁 王同敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2675-2685,共11页
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc... A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted. 展开更多
关键词 aluminum alloy clad composite hollow billet horizontal continuous casting electromagnetic stirring numerical simulation
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部