The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic for...The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.展开更多
The microstructure and properties of a 1030B Al strip were improved by applying ultrasonic melt treatment(UMT)in a Hazelett continuous casting direct rolling production line.The microstructure and properties of the 10...The microstructure and properties of a 1030B Al strip were improved by applying ultrasonic melt treatment(UMT)in a Hazelett continuous casting direct rolling production line.The microstructure and properties of the 1030B Al strip were investigated by scanning electron microscopy,electron backscatter diffraction,and tensile testing.Applying UMT reduced the average grain size of the as-cast sheet by more than 28.0%with respect to that of the normal samples without UMT.When UMT was applied,the rolled strip inherited the refined grains from the as-cast sheet with an average grain size smaller than 63.0μm.Meanwhile,the dislocation density was increased by the grain refinement,dynamic recovery,and recrystallization during rolling.Accordingly,the strain-hardening rates of the rolled samples after UMT were generally higher than those of the normal samples,and the strength of the rolled strip was also improved.Furthermore,the rolled strip exhibited better formability with higher strain-hardening exponents and Erichsen index values.展开更多
Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of ...Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of the final product. Based on previous investigation, the precipitation sequence and temperature, position and mode, as well as the size, morphology, and number of different types of precipitates were reviewed. The effects of C, N, Nb, Ti, and V on the precipitation behavior and surface transverse cracks in continuous casting slabs were summarized, with a particular emphasis on the new achievements concerning Ti addition. The critical amounts of different elements to avoid serious surface cracks during continuous casting were proposed. The control mechanisms and industrial effects of composition optimization, cooling design, and chamfered mold configuration to improve surface transverse cracks in continuous casting slabs were also illustrated, and the recent application of surface microstructure control technology was emphasized. The characteristics, advantages, and shortcomings of existing theoretical and experimental methods in investigating continuous casting surface cracks regarding precipitation are finally discussed, and a new setup with advanced functions is introduced.展开更多
The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel i...The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.展开更多
The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient...The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.展开更多
High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting...High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting.An equivalent austenite diameter was proposed,taking into account the weakening effects of proeutectoid ferrite films and Ti carbonitride precipitation.Based on this,a hot ductility prediction model for the slab was established to investigated hot ductility.The results show that as Ti content increases,the hot ductility of Ti microalloy steel initially increases and then decreases.At low Ti content,the pinning effect of Ti carbonitrides increases with the increase in Ti content,which inhibits grain coarsening for improving hot ductility.As Ti content increases,the size of carbonitrides grows,weakening the pinning effect and leading to austenite grain coarsening.Simultaneously,the formation of Ti carbonitrides inhibits proeutectoid ferrite film formation,leading to a reduction in its thickness.These combined factors reduce the hot ductility of the continuous casting steel.According to the hot ductility prediction model,in order of severity,the factors affecting hot ductility are:proeutectoid ferrite film,chain-like nanoscale Ti carbonitrides,austenite grain size,and dispersed nanoscale Ti carbonitrides.An accuracy error of less than 10%is shown by the model.展开更多
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model...The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.展开更多
To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Co...To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.展开更多
An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-...An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-LEMS were investigated by establishing a three-dimensional numerical simulation model and a pilot continuous casting simulation experiment and compared with the conventional rotary electromagnetic stirring(REMS).The results show that a longitudinally symmetric linear magnetic field is formed in the liquid core of the bloom by applying CV-LEMS,which induces a strong longitudinal circulation flow both on the inner arc side and the outer arc side in the liquid core of the bloom.The height of the melt longitudinal effective mixing range under CV-LEMS reaches 0.9 m,which is greater than that of the REMS and makes up for the deficiency of REMS sensitivity to the position of the final solidification zone.CV-LEMS strongly promotes the mixing of upper melt with high temperature and the lower part melt with low temperature in the liquid core,improves the uniformity of melt temperature distribution and significantly increases the melt temperature near the solidification front,and the width of the liquid core increases by 4.2 mm at maximum.This shows that the appliction of CV-LEMS is more helpful to strengthen the feeding effect of the upper melt to the solidification shrinkage of the lower melt than the conventional REMS and inhibits the formation of porosity,shrinkage cavity and crack defects in the center of the bloom.展开更多
After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.Howe...After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.However,the reduction in deformation during the HR process initiated stress concentration at the slab surface,and the crack risk increased.To effectively evaluate the risk of slab surface cracks under these complex conditions,the effect of the HR on the austenite recrystallization and thermoplasticity of a microalloyed slab surface was investigated by 15-pass reduction thermal simulation according to the wide and thick slab continuous casting process.The softening fraction was introduced as a global internal variable to quantitatively analyze various recrystallized re-refined grains.After the critical strain reaches the critical strain of dynamic recrystallization,a variety of recrystallization modes alternately occur.Among them,the contribution rate of dynamic crystallization to the later refinement reaches more than 50%.The contribution rates of static recrystallization and metadynamic recrystallization to grain refinement are almost the same.The thermoplasticity of the slab surface first increases and then decreases with increasing reduction pass.It was verified by transmission electron microscopy that the main reason for the decrease in thermoplasticity is that the dislocation multiplication rate increases,resulting in a sharp increase in stress and a decrease in thermoplasticity.展开更多
The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat ...The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat transfer-solidification coupling model were investigated.The results showed that the internal cracks induced by soft reduction exhibited a characteristic of being"coarse in the middle and fine at both ends",and displayed an elliptical arc distribution on the loose side of the strand cross section.The cracks originated within the brittle temperature range and propagated inward to the liquid impenetrable temperature and outward to the zero ductility temperature or below.The control strategy for enhancing the internal quality of the 45 steel strand through soft reduction is to adjust the casting speed or the reduction zone appropriately,ensuring that the central solid fraction of the reduction zone falls within the range of 0.33-0.99.At this point,a reasonable reduction amount is allocated to eliminate the center shrinkage cavities and center segregation,even if it results in minor reduction-induced cracks.展开更多
The effect of electromagnetic vibration(EMV)on the solidification structure of Cu-15Ni-8Sn alloy during bulk solidification and the upward continuous casting was investigated experimentally and numerically.The bulk so...The effect of electromagnetic vibration(EMV)on the solidification structure of Cu-15Ni-8Sn alloy during bulk solidification and the upward continuous casting was investigated experimentally and numerically.The bulk solidification results indicated that in the case of B=0.5 T and J=1.27×10^(5)A/m^(2),the most effective grain refinement frequency was at f=10 Hz,where fine non-dendrites were obtained.The solidification structure became coarser at f=0.1 Hz and f=1 Hz compared to the case of f=10 Hz,while no grain refinement was observed at f=100 Hz.The numerical simulations showed that at f=10 Hz,the strong melt convection surrounding the primary solid phase promotes the diffusion of the rejected solute,consequently,resulting in a reduction of the solute boundary layer,which leads to the decrease in the nucleation-free zone(NFZ)and the grain refinement.Additionally,the most effective grain refinement frequency transformed to 1 Hz when the electromagnetic force was reduced by five times.Moreover,we proposed that the most effective grain refinement frequency range aligns with the EMV-induced relative displacement in the range of 10^(2)–10^(3)μm.Finally,the upward continuous casting was conducted to validate the relative displacement range,and the experimental results matched well.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
The correlation between the longitudinal crack occurrence and integrated heat transfer of the mold with data mining methods was investigated.Firstly,three kinds of support vector machine models based on principal comp...The correlation between the longitudinal crack occurrence and integrated heat transfer of the mold with data mining methods was investigated.Firstly,three kinds of support vector machine models based on principal component analysis with different input features were established to explore the effect of integrated heat transfer on the accuracy of the prediction model for the longitudinal crack.The results show that the accuracy was improved while features including mean and standard deviation of integrated heat transfer were added.Then,the difference in integrated heat transfer between defect and normal samples under the same process parameters was quantitatively compared.Compared with normal samples,the temperature difference of cooling water for defect samples decreased by 0.65%,and the temperature difference fluctuation increased by 31.1%.Finally,the literature data were used to provide support for the quantitative correlation according to defect formation mechanism.A new criterion for the prediction of longitudinal crack and a discovering method for correlation between product quality and process parameters in the manufacturing industry have been provided.展开更多
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ...The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.展开更多
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate...Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.展开更多
The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thi...The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thin slab continuous casting and rolling and twin-roll thin strip were compared. Conventional continuous casting technology was widely adopted in producing electrical steel, thin slab continuous casting and rolling and middle thin slab contin- uous casting and roiling technology industrialized electrical steel~ and study of twin-roll thin strip casting technology was focused on fundamental experiments.展开更多
In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the elec...In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.展开更多
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金supported by the Application Technology of Automotive Steels(No.2021040300048)the National Natural Science Foundation of China(No.52304347)+2 种基金Hebei Provincial Natural Science Foundation(No.E2019501008),China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202320)Natural Science Foundation of Liaoning Province(Nos.2023-MSBA-135 and 2023-BSBA-107)Fundamental Research Funds for the Central Universities(Nos.N2409008 and N2409006).
文摘The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.
基金the National Natural Science Foundation of China(No.52004254)the Major Science and Technology Project of Henan Province,China(No.221100240300).
文摘The microstructure and properties of a 1030B Al strip were improved by applying ultrasonic melt treatment(UMT)in a Hazelett continuous casting direct rolling production line.The microstructure and properties of the 1030B Al strip were investigated by scanning electron microscopy,electron backscatter diffraction,and tensile testing.Applying UMT reduced the average grain size of the as-cast sheet by more than 28.0%with respect to that of the normal samples without UMT.When UMT was applied,the rolled strip inherited the refined grains from the as-cast sheet with an average grain size smaller than 63.0μm.Meanwhile,the dislocation density was increased by the grain refinement,dynamic recovery,and recrystallization during rolling.Accordingly,the strain-hardening rates of the rolled samples after UMT were generally higher than those of the normal samples,and the strength of the rolled strip was also improved.Furthermore,the rolled strip exhibited better formability with higher strain-hardening exponents and Erichsen index values.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of the final product. Based on previous investigation, the precipitation sequence and temperature, position and mode, as well as the size, morphology, and number of different types of precipitates were reviewed. The effects of C, N, Nb, Ti, and V on the precipitation behavior and surface transverse cracks in continuous casting slabs were summarized, with a particular emphasis on the new achievements concerning Ti addition. The critical amounts of different elements to avoid serious surface cracks during continuous casting were proposed. The control mechanisms and industrial effects of composition optimization, cooling design, and chamfered mold configuration to improve surface transverse cracks in continuous casting slabs were also illustrated, and the recent application of surface microstructure control technology was emphasized. The characteristics, advantages, and shortcomings of existing theoretical and experimental methods in investigating continuous casting surface cracks regarding precipitation are finally discussed, and a new setup with advanced functions is introduced.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant No.U1860111)Weifang Science and Technology Development Plan Project(Project No.2023ZJ1166).
文摘The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.
基金financially supported by the Central Government Guiding Local Science and Technology Development Fund of Henan Province(Z20241471091)the Independent R&D Funds of State Key Laboratory of Advanced Metallurgy(41624025).
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.
基金financially supported by the National Natural Science Foundation of China(No.51974078)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project,Nos.2022 JH25/10200003 and 2023 JH2/101800058)the Fundamental Research Funds for the Central Universities(No.N25YJS003).
文摘High temperature tensile were performed by using a thermo-mechanical GW1600 to simulate the deformation of Ti microalloy steels at high temperatures and low deformation rates similar to those during continuous casting.An equivalent austenite diameter was proposed,taking into account the weakening effects of proeutectoid ferrite films and Ti carbonitride precipitation.Based on this,a hot ductility prediction model for the slab was established to investigated hot ductility.The results show that as Ti content increases,the hot ductility of Ti microalloy steel initially increases and then decreases.At low Ti content,the pinning effect of Ti carbonitrides increases with the increase in Ti content,which inhibits grain coarsening for improving hot ductility.As Ti content increases,the size of carbonitrides grows,weakening the pinning effect and leading to austenite grain coarsening.Simultaneously,the formation of Ti carbonitrides inhibits proeutectoid ferrite film formation,leading to a reduction in its thickness.These combined factors reduce the hot ductility of the continuous casting steel.According to the hot ductility prediction model,in order of severity,the factors affecting hot ductility are:proeutectoid ferrite film,chain-like nanoscale Ti carbonitrides,austenite grain size,and dispersed nanoscale Ti carbonitrides.An accuracy error of less than 10%is shown by the model.
基金financially supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project,Nos.2022JH25/10200003 and 2023JH2/101800058)the Fundamental Research Funds for the Central Universities(Nos.N25YJS003 and N25DCG006)。
文摘The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.
基金supported by the Startup Foundation of Shenyang Agriculture University(No.X2023050)the Fundamental Research Funds for the Central Universities(No.N2209006)the National Natural Science Foundation of China(No.U22A20173).
文摘To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.
基金the National Natural Science Foundation of China(Grant No.U1760206 and Grant No.51574083)the 111 Project(2.0)of China(No.BP0719037)for the financial support。
文摘An opposite combined vertical linear electromagnetic stirring(CV-LEMS)was proposed,which is applied in the final solidification zone of bloom continuous casting.The melt flow,heat transfer,and solidification under CV-LEMS were investigated by establishing a three-dimensional numerical simulation model and a pilot continuous casting simulation experiment and compared with the conventional rotary electromagnetic stirring(REMS).The results show that a longitudinally symmetric linear magnetic field is formed in the liquid core of the bloom by applying CV-LEMS,which induces a strong longitudinal circulation flow both on the inner arc side and the outer arc side in the liquid core of the bloom.The height of the melt longitudinal effective mixing range under CV-LEMS reaches 0.9 m,which is greater than that of the REMS and makes up for the deficiency of REMS sensitivity to the position of the final solidification zone.CV-LEMS strongly promotes the mixing of upper melt with high temperature and the lower part melt with low temperature in the liquid core,improves the uniformity of melt temperature distribution and significantly increases the melt temperature near the solidification front,and the width of the liquid core increases by 4.2 mm at maximum.This shows that the appliction of CV-LEMS is more helpful to strengthen the feeding effect of the upper melt to the solidification shrinkage of the lower melt than the conventional REMS and inhibits the formation of porosity,shrinkage cavity and crack defects in the center of the bloom.
基金supported by the National Natural Science Foundation of China(51974078)the Applied Basic Research Program of Liaoning Province(2022JH2/101300002,2022JH25/10200003)the Applied Basic Research Program of Liaoning Province,and the State Key Laboratory of Metal Material for Marine Equipment and Application Project(SKLMEA-K202204).
文摘After the heavy reduction(HR)process was carried out at the solidification end of the continuous casting slab,the austenite grains were refined by recrystallization,which improved the thermoplasticity of the slab.However,the reduction in deformation during the HR process initiated stress concentration at the slab surface,and the crack risk increased.To effectively evaluate the risk of slab surface cracks under these complex conditions,the effect of the HR on the austenite recrystallization and thermoplasticity of a microalloyed slab surface was investigated by 15-pass reduction thermal simulation according to the wide and thick slab continuous casting process.The softening fraction was introduced as a global internal variable to quantitatively analyze various recrystallized re-refined grains.After the critical strain reaches the critical strain of dynamic recrystallization,a variety of recrystallization modes alternately occur.Among them,the contribution rate of dynamic crystallization to the later refinement reaches more than 50%.The contribution rates of static recrystallization and metadynamic recrystallization to grain refinement are almost the same.The thermoplasticity of the slab surface first increases and then decreases with increasing reduction pass.It was verified by transmission electron microscopy that the main reason for the decrease in thermoplasticity is that the dislocation multiplication rate increases,resulting in a sharp increase in stress and a decrease in thermoplasticity.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.U1860111).
文摘The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat transfer-solidification coupling model were investigated.The results showed that the internal cracks induced by soft reduction exhibited a characteristic of being"coarse in the middle and fine at both ends",and displayed an elliptical arc distribution on the loose side of the strand cross section.The cracks originated within the brittle temperature range and propagated inward to the liquid impenetrable temperature and outward to the zero ductility temperature or below.The control strategy for enhancing the internal quality of the 45 steel strand through soft reduction is to adjust the casting speed or the reduction zone appropriately,ensuring that the central solid fraction of the reduction zone falls within the range of 0.33-0.99.At this point,a reasonable reduction amount is allocated to eliminate the center shrinkage cavities and center segregation,even if it results in minor reduction-induced cracks.
基金financially supported by the National Natural Science Foundation of China(Nos.51904184,52204392,52274385,and 52204347)the National Key Research and Development Program of China(No.2022YFC2904900)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘The effect of electromagnetic vibration(EMV)on the solidification structure of Cu-15Ni-8Sn alloy during bulk solidification and the upward continuous casting was investigated experimentally and numerically.The bulk solidification results indicated that in the case of B=0.5 T and J=1.27×10^(5)A/m^(2),the most effective grain refinement frequency was at f=10 Hz,where fine non-dendrites were obtained.The solidification structure became coarser at f=0.1 Hz and f=1 Hz compared to the case of f=10 Hz,while no grain refinement was observed at f=100 Hz.The numerical simulations showed that at f=10 Hz,the strong melt convection surrounding the primary solid phase promotes the diffusion of the rejected solute,consequently,resulting in a reduction of the solute boundary layer,which leads to the decrease in the nucleation-free zone(NFZ)and the grain refinement.Additionally,the most effective grain refinement frequency transformed to 1 Hz when the electromagnetic force was reduced by five times.Moreover,we proposed that the most effective grain refinement frequency range aligns with the EMV-induced relative displacement in the range of 10^(2)–10^(3)μm.Finally,the upward continuous casting was conducted to validate the relative displacement range,and the experimental results matched well.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金the support from National Natural Science Foundation of China(52274318).
文摘The correlation between the longitudinal crack occurrence and integrated heat transfer of the mold with data mining methods was investigated.Firstly,three kinds of support vector machine models based on principal component analysis with different input features were established to explore the effect of integrated heat transfer on the accuracy of the prediction model for the longitudinal crack.The results show that the accuracy was improved while features including mean and standard deviation of integrated heat transfer were added.Then,the difference in integrated heat transfer between defect and normal samples under the same process parameters was quantitatively compared.Compared with normal samples,the temperature difference of cooling water for defect samples decreased by 0.65%,and the temperature difference fluctuation increased by 31.1%.Finally,the literature data were used to provide support for the quantitative correlation according to defect formation mechanism.A new criterion for the prediction of longitudinal crack and a discovering method for correlation between product quality and process parameters in the manufacturing industry have been provided.
基金Project(50674066)supported by the National Natural Science Foundation of China
文摘The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.
基金Project(51374025) supported by the National Natural Science Foundation of ChinaProject(2014Z-05) supported by the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(2152020) supported by the Beijing Natural Science Foundation,China
文摘Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.
文摘The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thin slab continuous casting and rolling and twin-roll thin strip were compared. Conventional continuous casting technology was widely adopted in producing electrical steel, thin slab continuous casting and rolling and middle thin slab contin- uous casting and roiling technology industrialized electrical steel~ and study of twin-roll thin strip casting technology was focused on fundamental experiments.
文摘In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.