To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. T...To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. Three bridge finite element (FE) models were built using OpenSees, in which the longitudinal and transverse pounding elements, as well as the transverse failure element of bearings were introduced. Based on this, tire seismic response analysis considering the coupling pounding-friction effect was conducted for the continuous bridge subjected to bi-directional ground motions. Furthermore, the influential parameters were analyzed. The analysis results indicate that the coupling pounding-friction effect can alter the internal force distribution of the bridge structure and generate additional torsional force to bridge columns. The friction coefficient and longitudinal pounding gap size are two important factors. The appropriate friction coefficient and longitudinal pounding gap size can significantly reduce seismic response of girders, and effectively transfer part of the girder inertia force from the fixed columns to the sliding columns, which can reduce the seismic demands of the fixed columns and improve the seismic performance of continuous bridge structures.展开更多
To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance asses...To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance assessment of concrete bridges was proposed.The existing assessment methods were firstly introduced and compared.Some essential mechanics problems involved in the degradation process,such as the deterioration of materials properties,the reduction of sectional areas and the variation of overall structural performance caused by the first two problems,were investigated and solved.A computer program named CBDAS(Concrete Bridge Durability Analysis System) was written to perform the above-metioned approach.Finally,the degradation process of a prestressed concrete continuous bridge under chloride penetration was discussed.The results show that the concrete normal stress for serviceability limit state exceeds the threshold value after 60 a,but the various performance indicators at ultimate limit state are consistently in the allowable level during service life.Therefore,in the case of prestressed concrete bridges,the serviceability limit state is more possible to have durability problems in life-cycle;however,the performance indicators at ultimate limit state can satisfy the requirements.展开更多
In order to promote the rapid development of urbanization in our country,it is necessary to improve the construction level and technology of bridge engineering.For long-span continuous bridge technology,it has the cha...In order to promote the rapid development of urbanization in our country,it is necessary to improve the construction level and technology of bridge engineering.For long-span continuous bridge technology,it has the characteristics of wide application range,various applicable conditions,and short construction period.Therefore,it is necessary to pay attention to the application of long-span continuous bridge technology.This article mainly analyzes its application in bridge construction,hoping to provide some reference for future use.展开更多
The objective of this research is to assess the seismic behavior of the continuous T-beam bridge located at Kulungou in Xinjiang.In addition to traditional static and modal analyses,this study introduces a novel appro...The objective of this research is to assess the seismic behavior of the continuous T-beam bridge located at Kulungou in Xinjiang.In addition to traditional static and modal analyses,this study introduces a novel approach by comprehensively examining the performance of the bridge during construction stages,under ultimate load capacities and seismic load.Compliance with regulatory standards is verified by the static analysis,which also yields a thorough comprehension of stress distribution across various stages of construction.By unveiling the initial 100 vibration modes,the modal analysis has significantly enhanced our comprehension and established a robust basis for the ensuing seismic analysis.A distinctive aspect of this research is its comprehensive exploration of the bridge’s seismic behavior under E1 and E2 earthquake excitations.Under E1 earthquake excitation,the response spectrum analysis confirms the adequacy of the bridge piers’strength according to seismic design criteria,whereas the time-history analysis conducted under E2 ground motion reveals the bridge’s robust resistance to strong earthquakes.This study also undertakes a comparative assessment of the seismic behavior of the bridge,contrasting its performance with lead-rubber bearings against that with high-damping rubber bearings.According to the study’s findings,both types of bearings demonstrate their efficacy in mitigating seismic responses,thereby emphasizing their potential as innovative approaches to enhance the resilience of bridges.A notable contribution of this research lies in its assessment of seismic performance indicators,namely hysteresis curves,backbone curves,and ductility coefficients,utilizing Pushover analysis.By conducting a thorough evaluation,a more profound insight into the seismic performance of bridge piers is gained.In conclusion,the study explores how earthquake wave intensity and aftershocks affect the seismic response of bridge piers,showing a substantial increase in seismic response with intensifying wave magnitude and the potential for aftershocks to aggravate damage to compromised structures.The importance of incorporating these factors in the seismic design and retrofitting of bridges is underscored by these discoveries.This study,in its entirety,proposes a fresh and comprehensive methodology to assess the seismic performance of continuous T-beam bridges,furnishing valuable perspectives and innovative remedies to augment the seismic resilience of bridges in earthquake-prone zones.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge co...Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.展开更多
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac...To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system.展开更多
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite elemen...This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite element method and self-compiling program, a systematic study of the reliability of LRB continuous girder bridges is given by the use of different indicators, including the riding comfort of the LRB system, the pounding and dynamic stability when the LRB system is subjected to seismic excitations, and the reliability of the LRB system when subjected to other common horizontal loads. The results show that the LRB system has obvious advantages over the traditional continuous girder structure. The LRB isolation effect remains good even when pile-soil interaction is considered; the vertical rigidity of the LRB guarantees desirable riding comfort. The LRB demonstrates good reliability when subjected to the effects of braking, wind loads and temperature. However, it is also pointed out that the pounding of the LRB system subjected to earthquakes must be avoided, and the dynamic stability may be reduced when the LRB system has higher piers and generates a larger displacement in a strong earthquake. Useful advice and guidance are proposed for engineering application.展开更多
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat...The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and t...The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.展开更多
To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements ...To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is d...Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.展开更多
During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-...During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-span continuous rigid frame bridge in Wuhan, the longest span stability coefficient is calculated with linear-buckling and nonlinear-buckling methods, respectively. The influences of both geometrical nonlinearity and the dual nonlinearity of material and geometry are considered. Numerical results indicate that the nonlinear solution is necessary to stability analysis because linear buckling loads are much higher than those of nonlinear buckling. Thus, the edge fiber yield criterion is more convenient and faster than ultimate loading criterion when estimating nonlinear stability of structure, and can be used easily in the initial engineering design.展开更多
The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- serve...The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- served duct can increase the pre-stress of the main beam effectively, and decrease the long term span deflection in order to improve the performance of the girder. At the same time, the proper tension position is very crucial to optimise the stress distribution of the bridge and control the deflection increase. Combining with practical en- gineering, the authors analyze the influence of different positions of post-tension tendon ( including top-, web- and bottom plate tendons) on the stress and deflection of the main beam, and find out the optimal position of post tendon.展开更多
It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain inter...It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain international tourism resort as an example,the authors studied it in shutdown phase and the cantilever construction process,established the simulation model by using Midas / civil,and analyzed time-history of each construction stage for the bridge.The study shows that long-span bridge cantilever construction in northeastern China can be divided into two-year tasks for construction(suspending in winter).It is needed to think about seismic stability of the cantilever position in shut-down phase of winter.The effect of longitudinal vibration is the most disadvantageous influence to bridge,and its calculation results can provide reference for seismic design of similar bridges in the future.展开更多
In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state wh...In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.展开更多
基金The National Natural Science Foundation of China(No.51678141)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0128)the Fundamental Research Funds for the Central Universities
文摘To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. Three bridge finite element (FE) models were built using OpenSees, in which the longitudinal and transverse pounding elements, as well as the transverse failure element of bearings were introduced. Based on this, tire seismic response analysis considering the coupling pounding-friction effect was conducted for the continuous bridge subjected to bi-directional ground motions. Furthermore, the influential parameters were analyzed. The analysis results indicate that the coupling pounding-friction effect can alter the internal force distribution of the bridge structure and generate additional torsional force to bridge columns. The friction coefficient and longitudinal pounding gap size are two important factors. The appropriate friction coefficient and longitudinal pounding gap size can significantly reduce seismic response of girders, and effectively transfer part of the girder inertia force from the fixed columns to the sliding columns, which can reduce the seismic demands of the fixed columns and improve the seismic performance of continuous bridge structures.
基金Project(2006.318.223.02-01) supported by the Ministry of Transportation and Communications through the Scientific and Technological Funds of ChinaProject(2007AA11Z104) supported by the High Technology Research and Development of ChinaProject(20090072110045) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance assessment of concrete bridges was proposed.The existing assessment methods were firstly introduced and compared.Some essential mechanics problems involved in the degradation process,such as the deterioration of materials properties,the reduction of sectional areas and the variation of overall structural performance caused by the first two problems,were investigated and solved.A computer program named CBDAS(Concrete Bridge Durability Analysis System) was written to perform the above-metioned approach.Finally,the degradation process of a prestressed concrete continuous bridge under chloride penetration was discussed.The results show that the concrete normal stress for serviceability limit state exceeds the threshold value after 60 a,but the various performance indicators at ultimate limit state are consistently in the allowable level during service life.Therefore,in the case of prestressed concrete bridges,the serviceability limit state is more possible to have durability problems in life-cycle;however,the performance indicators at ultimate limit state can satisfy the requirements.
文摘In order to promote the rapid development of urbanization in our country,it is necessary to improve the construction level and technology of bridge engineering.For long-span continuous bridge technology,it has the characteristics of wide application range,various applicable conditions,and short construction period.Therefore,it is necessary to pay attention to the application of long-span continuous bridge technology.This article mainly analyzes its application in bridge construction,hoping to provide some reference for future use.
基金Supported by the Scientific and Technological Research and Development Program of Xinjiang Transportation Investment(Group)Co.,Ltd.:XJJTZKX-FWCG-202312-0456。
文摘The objective of this research is to assess the seismic behavior of the continuous T-beam bridge located at Kulungou in Xinjiang.In addition to traditional static and modal analyses,this study introduces a novel approach by comprehensively examining the performance of the bridge during construction stages,under ultimate load capacities and seismic load.Compliance with regulatory standards is verified by the static analysis,which also yields a thorough comprehension of stress distribution across various stages of construction.By unveiling the initial 100 vibration modes,the modal analysis has significantly enhanced our comprehension and established a robust basis for the ensuing seismic analysis.A distinctive aspect of this research is its comprehensive exploration of the bridge’s seismic behavior under E1 and E2 earthquake excitations.Under E1 earthquake excitation,the response spectrum analysis confirms the adequacy of the bridge piers’strength according to seismic design criteria,whereas the time-history analysis conducted under E2 ground motion reveals the bridge’s robust resistance to strong earthquakes.This study also undertakes a comparative assessment of the seismic behavior of the bridge,contrasting its performance with lead-rubber bearings against that with high-damping rubber bearings.According to the study’s findings,both types of bearings demonstrate their efficacy in mitigating seismic responses,thereby emphasizing their potential as innovative approaches to enhance the resilience of bridges.A notable contribution of this research lies in its assessment of seismic performance indicators,namely hysteresis curves,backbone curves,and ductility coefficients,utilizing Pushover analysis.By conducting a thorough evaluation,a more profound insight into the seismic performance of bridge piers is gained.In conclusion,the study explores how earthquake wave intensity and aftershocks affect the seismic response of bridge piers,showing a substantial increase in seismic response with intensifying wave magnitude and the potential for aftershocks to aggravate damage to compromised structures.The importance of incorporating these factors in the seismic design and retrofitting of bridges is underscored by these discoveries.This study,in its entirety,proposes a fresh and comprehensive methodology to assess the seismic performance of continuous T-beam bridges,furnishing valuable perspectives and innovative remedies to augment the seismic resilience of bridges in earthquake-prone zones.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金The Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.
基金provided by the National Natural Science Foundation of China (51378504)Funding Project of Traffic Science and Technology Program of Hunan Province (201022)
文摘To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system.
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
基金The National Natural Science Foundation of China(No.51008134)
文摘This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite element method and self-compiling program, a systematic study of the reliability of LRB continuous girder bridges is given by the use of different indicators, including the riding comfort of the LRB system, the pounding and dynamic stability when the LRB system is subjected to seismic excitations, and the reliability of the LRB system when subjected to other common horizontal loads. The results show that the LRB system has obvious advantages over the traditional continuous girder structure. The LRB isolation effect remains good even when pile-soil interaction is considered; the vertical rigidity of the LRB guarantees desirable riding comfort. The LRB demonstrates good reliability when subjected to the effects of braking, wind loads and temperature. However, it is also pointed out that the pounding of the LRB system subjected to earthquakes must be avoided, and the dynamic stability may be reduced when the LRB system has higher piers and generates a larger displacement in a strong earthquake. Useful advice and guidance are proposed for engineering application.
基金National Natural Science Foundation of China Under Grant No. 50708074National Key Technology R&D Program Under Grant No. 2009BAG15B01+2 种基金the Ministry of Science and Technology of China, Under Grant No. SLDRCE 08-B-04the Fundamental Research Funds for the Central UniversitiesKwang-Hua Fund for College of Civil Engineering, Tongji University
文摘The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
基金Supported by the National Natural Science Foundation of China(No.51178310)the Foundation of China Scholarship Council(No.201308120137)
文摘The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.
基金Project supported by the National Natural Science Foundation of China(Nos.51578496 and 51878603)the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)。
文摘To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.
基金The National Natural Science Foundation of China (No.50608036)
文摘During cantilever cast in construction of high-pier and large-span continuous rigid frame bridges, structural stability in the longest cantilevered stage is very important. Based on a practical design case of a large-span continuous rigid frame bridge in Wuhan, the longest span stability coefficient is calculated with linear-buckling and nonlinear-buckling methods, respectively. The influences of both geometrical nonlinearity and the dual nonlinearity of material and geometry are considered. Numerical results indicate that the nonlinear solution is necessary to stability analysis because linear buckling loads are much higher than those of nonlinear buckling. Thus, the edge fiber yield criterion is more convenient and faster than ultimate loading criterion when estimating nonlinear stability of structure, and can be used easily in the initial engineering design.
文摘The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- served duct can increase the pre-stress of the main beam effectively, and decrease the long term span deflection in order to improve the performance of the girder. At the same time, the proper tension position is very crucial to optimise the stress distribution of the bridge and control the deflection increase. Combining with practical en- gineering, the authors analyze the influence of different positions of post-tension tendon ( including top-, web- and bottom plate tendons) on the stress and deflection of the main beam, and find out the optimal position of post tendon.
文摘It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain international tourism resort as an example,the authors studied it in shutdown phase and the cantilever construction process,established the simulation model by using Midas / civil,and analyzed time-history of each construction stage for the bridge.The study shows that long-span bridge cantilever construction in northeastern China can be divided into two-year tasks for construction(suspending in winter).It is needed to think about seismic stability of the cantilever position in shut-down phase of winter.The effect of longitudinal vibration is the most disadvantageous influence to bridge,and its calculation results can provide reference for seismic design of similar bridges in the future.
文摘In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.