In order to study the influence of die combination on continuous variable cross-section direct extrusion (CVCDE) in the extrusion process, the accumulative strain formula is derived, and it can be known that the ext...In order to study the influence of die combination on continuous variable cross-section direct extrusion (CVCDE) in the extrusion process, the accumulative strain formula is derived, and it can be known that the extrusion ratio of various stages directly determines the size of corresponding stage strain by formula. In this paper, as an example of the two interim dies, three die combinations of different angles and extrusion ratio are designed. Aviation magnesium alloy ZM6 is studied, and the results show that dynamic recrystallization is even more complete when continuous shear deformation occurs, so that the refinement and homogenization of microstructure are obtained. By the use of different die combinations, the accumulative strain increases under the conditions of same total extrusion ratio. Thus, the refined crystalline strengthening effect of extrusion deformation can be further analyzed. Due to the dead-zone defects, the actual accumulative strain decreases significantly and the effect of microstructure and performance improvements also decreases with it. Therefore, the optimal design of die combination is the key to the process and product of CVCDE, which provides a scientific basis for the development of severe plastic deformation.展开更多
Magnesium(Mg) alloy AZ31 was produced by continuous variable cross-section direct extrusion(CVCDE)to study its deformation behavior. Metallographic microscopy(OM), transmission electron microscopy(TEM), and sc...Magnesium(Mg) alloy AZ31 was produced by continuous variable cross-section direct extrusion(CVCDE)to study its deformation behavior. Metallographic microscopy(OM), transmission electron microscopy(TEM), and scanning electron microscopy(SEM) were used to observe the variations in microstructure and fracture morphology of Mg alloy AZ31 as a function of processing methods. The results reveal that grains of Mg alloy AZ31 were refined and their microstructure was homogenized by CVCDE. The recrystallization in Mg alloy AZ31 produced by CVCDE with 2 interim dies was more complete than that produced by conventional extrusion(CE) and CVCDE with 1 interim die, and the grains were finer and more uniform.Plasticity of the AZ31 alloy was improved. Fracture mode was evolved from a combination of ductility and brittleness to a sole ductile form. In summary, a CVCDE mold structure with 2 interim dies can improve microstructure, plasticity, and toughness of Mg alloy AZ31.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51205094)
文摘In order to study the influence of die combination on continuous variable cross-section direct extrusion (CVCDE) in the extrusion process, the accumulative strain formula is derived, and it can be known that the extrusion ratio of various stages directly determines the size of corresponding stage strain by formula. In this paper, as an example of the two interim dies, three die combinations of different angles and extrusion ratio are designed. Aviation magnesium alloy ZM6 is studied, and the results show that dynamic recrystallization is even more complete when continuous shear deformation occurs, so that the refinement and homogenization of microstructure are obtained. By the use of different die combinations, the accumulative strain increases under the conditions of same total extrusion ratio. Thus, the refined crystalline strengthening effect of extrusion deformation can be further analyzed. Due to the dead-zone defects, the actual accumulative strain decreases significantly and the effect of microstructure and performance improvements also decreases with it. Therefore, the optimal design of die combination is the key to the process and product of CVCDE, which provides a scientific basis for the development of severe plastic deformation.
基金financial support from the National Natural Science Foundation of China (No. 51675143)
文摘Magnesium(Mg) alloy AZ31 was produced by continuous variable cross-section direct extrusion(CVCDE)to study its deformation behavior. Metallographic microscopy(OM), transmission electron microscopy(TEM), and scanning electron microscopy(SEM) were used to observe the variations in microstructure and fracture morphology of Mg alloy AZ31 as a function of processing methods. The results reveal that grains of Mg alloy AZ31 were refined and their microstructure was homogenized by CVCDE. The recrystallization in Mg alloy AZ31 produced by CVCDE with 2 interim dies was more complete than that produced by conventional extrusion(CE) and CVCDE with 1 interim die, and the grains were finer and more uniform.Plasticity of the AZ31 alloy was improved. Fracture mode was evolved from a combination of ductility and brittleness to a sole ductile form. In summary, a CVCDE mold structure with 2 interim dies can improve microstructure, plasticity, and toughness of Mg alloy AZ31.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.