A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy fil...A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.展开更多
Accurately finding the region of interest is a very vital step for segmenting organs in medical image processing.We propose a novel approach of automatically identifying region of interest in Computed Tomography Image...Accurately finding the region of interest is a very vital step for segmenting organs in medical image processing.We propose a novel approach of automatically identifying region of interest in Computed Tomography Image(CT)images based on temporal and spatial data.Our method is a 3 stages approach,1)We extract organ features from the CT images by adopting the Hounsfield filter.2)We use these filtered features and introduce our novel approach of selecting observable feature candidates by calculating contours’area and automatically detect a seed point.3)We use a novel approach to track the growing region changes across the CT image sequence in detecting region of interest,given a seed point as our input.We used quantitative and qualitative analysis to measure the accuracy against the given ground truth and our results presented a better performance than other generic approaches for automatic region of interest detection of organs in abdominal CT images.With the results presented in this research work,our proposed novel sequence approach method has been proven to be superior in terms of accuracy,automation and robustness.展开更多
This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking c...This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.展开更多
In this study,the aeroelastic response of a wing-pylon-nacelle system in subsonic and low supersonic flow regimes is analyzed using the continuation method in conjunction with an adaptive step size control algorithm.I...In this study,the aeroelastic response of a wing-pylon-nacelle system in subsonic and low supersonic flow regimes is analyzed using the continuation method in conjunction with an adaptive step size control algorithm.Idealizing the pylon and nacelle as a point mass,the computed effects of a standard structural analysis of the wing together with the pylon and nacelle are compared with those of a clean wing to build a reduced-order model for analysis.The aerodynamic forces relating to different reduced frequencies are assessed using the Doublet Lattice Method(DLM)in the subsonic flow regime and supersonic lifting surface theory relying on the unsteady linearized small-disturbance potential flow model in the low supersonic flow regime.The Rational Function Approximation(RFA)method is then utilized for the state-space formulation of the system equations,appended with the continuation method for flutter prediction.Thereafter,the linearized aeroelastic equations are resolved using the continuation method with adaptive step size,the results of which are matched with those obtained from the traditional p-k method to emphasize that the continuation method exhibits a distinct advantage in achieving better accuracy in estimating the flutter speed and identifying the“mode switching”phenomenon.展开更多
This paper presents a new correction method, "instant correction method(ICM)", to improve the accuracy of numerical prediction products(NPP) and provide weather variables at grid cells. The ICM makes use of ...This paper presents a new correction method, "instant correction method(ICM)", to improve the accuracy of numerical prediction products(NPP) and provide weather variables at grid cells. The ICM makes use of the continuity in time of the forecast errors at different forecast times to improve the accuracy of large scale NPP. To apply the ICM in China, an ensemble correction scheme is designed to correct the T213 NPP(the most popular NPP in China) through different statistical methods. The corrected T213 NPP(ICM T213 NPP) are evaluated by four popular indices: Correlation coefficient, climate anomalies correlation coefficient, root-mean-square-errors(RMSE), and confidence intervals(CI). The results show that the ICM T213 NPP are more accurate than the original T213 NPP in both the training period(2003–2008) and the validation period(2009–2010). Applications in China over the past three years indicate that the ICM is simple, fast, and reliable. Because of its low computing cost, end users in need of more accurate short-range weather forecasts around China can benefit greatly from the method.展开更多
基金Supported by the National Natural Science Foundation of China(No.61221003)
文摘A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.
基金This work was supported by the National Natural Science Foundation of China(Nos.61772242,61572239,61402204)Research Fund for Advanced Talents of Jiangsu University(14JDG141)+2 种基金Qing Lan ProjectChina Postdoctoral Science Foundation(No.2017M611737)Zhenjiang social development project(SH2016029).
文摘Accurately finding the region of interest is a very vital step for segmenting organs in medical image processing.We propose a novel approach of automatically identifying region of interest in Computed Tomography Image(CT)images based on temporal and spatial data.Our method is a 3 stages approach,1)We extract organ features from the CT images by adopting the Hounsfield filter.2)We use these filtered features and introduce our novel approach of selecting observable feature candidates by calculating contours’area and automatically detect a seed point.3)We use a novel approach to track the growing region changes across the CT image sequence in detecting region of interest,given a seed point as our input.We used quantitative and qualitative analysis to measure the accuracy against the given ground truth and our results presented a better performance than other generic approaches for automatic region of interest detection of organs in abdominal CT images.With the results presented in this research work,our proposed novel sequence approach method has been proven to be superior in terms of accuracy,automation and robustness.
基金supported by the National Natural Science Foundation of China under Grant No.61174037
文摘This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.
基金the Innovation Fund of the Engineering Research Center of Integration and Application of Digital Learning Technology,Ministry of Education(1221043)the Youth Research Project-The Open University of China(Q21A0009)the Adult continuing education research program-China Adult Education Association(2021-326Y).
文摘In this study,the aeroelastic response of a wing-pylon-nacelle system in subsonic and low supersonic flow regimes is analyzed using the continuation method in conjunction with an adaptive step size control algorithm.Idealizing the pylon and nacelle as a point mass,the computed effects of a standard structural analysis of the wing together with the pylon and nacelle are compared with those of a clean wing to build a reduced-order model for analysis.The aerodynamic forces relating to different reduced frequencies are assessed using the Doublet Lattice Method(DLM)in the subsonic flow regime and supersonic lifting surface theory relying on the unsteady linearized small-disturbance potential flow model in the low supersonic flow regime.The Rational Function Approximation(RFA)method is then utilized for the state-space formulation of the system equations,appended with the continuation method for flutter prediction.Thereafter,the linearized aeroelastic equations are resolved using the continuation method with adaptive step size,the results of which are matched with those obtained from the traditional p-k method to emphasize that the continuation method exhibits a distinct advantage in achieving better accuracy in estimating the flutter speed and identifying the“mode switching”phenomenon.
基金partially supported by the National Natural Science Foundation of China(Grant No.91125010)
文摘This paper presents a new correction method, "instant correction method(ICM)", to improve the accuracy of numerical prediction products(NPP) and provide weather variables at grid cells. The ICM makes use of the continuity in time of the forecast errors at different forecast times to improve the accuracy of large scale NPP. To apply the ICM in China, an ensemble correction scheme is designed to correct the T213 NPP(the most popular NPP in China) through different statistical methods. The corrected T213 NPP(ICM T213 NPP) are evaluated by four popular indices: Correlation coefficient, climate anomalies correlation coefficient, root-mean-square-errors(RMSE), and confidence intervals(CI). The results show that the ICM T213 NPP are more accurate than the original T213 NPP in both the training period(2003–2008) and the validation period(2009–2010). Applications in China over the past three years indicate that the ICM is simple, fast, and reliable. Because of its low computing cost, end users in need of more accurate short-range weather forecasts around China can benefit greatly from the method.