期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
WF-CFRB:A Deep Learning Approach for Fake Review Detection Based on Weighted Fusion of Contextual Features and Reviewer Behaviors
1
作者 Junren Wang Jindong Chen Wen Zhang 《Journal of Systems Science and Systems Engineering》 2025年第5期558-575,共18页
Due to the increasing importance of online product reviews,how to accurately identify fake reviews has become an issue of concern to enterprises and consumers.The contextual features encapsulate the semantic informati... Due to the increasing importance of online product reviews,how to accurately identify fake reviews has become an issue of concern to enterprises and consumers.The contextual features encapsulate the semantic information of review,while the behavioral features reflect the behavioral patterns of reviewers.However,an appropriate method to integrate contextual and behavioral features is a challenging task,hence an end-to-end model based on Weighted Fusion of Contextual Features and Reviewer Behaviors(WF-CFRB)for fake review detection is proposed.Firstly,the categories of average cosine similarity and the corpus of review are jointly fed into BERT to obtain contextual feature vectors.Then,the underlying patterns of the reviewer behaviors are extracted by CNN to construct behavioral feature vectors.Finally,a weighted fusion method is adopted to fuse contextual and behavior features for fake review detection.WF-CFRB and each component are evaluated on YELP dataset.WF-CFRB achieves F1 score of 81.31%and AUC score of 81.27%,and it also outperforms the other baseline models in terms of accuracy and recall.Compared with the original BERT model,the experimental results indicate that cosine similarity provides BERT with more information,which is useful to construct the contextual feature vectors.Through the weighted fusion of contextual and behavioral features,WF-CFRB yields excellent performance on fake review detection,which is particularly suitable for scenarios where behavioral features can be captured. 展开更多
关键词 Fake review detection BERT contextual features reviewer behaviors weighted fusion
原文传递
Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution 被引量:1
2
作者 Kun Yang Lei Zhao +4 位作者 Xianghui Wang Mingyang Zhang Linyan Xue Shuang Liu Kun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5159-5176,共18页
The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study s... The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19. 展开更多
关键词 SUPER-RESOLUTION COVID-19 chest CT lightweight network contextual feature extraction attentional feature fusion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部