In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.Howe...In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.However,sensor's precision variance,equipment heterogeneity,network delay and the difference of statistical algorithms can lead to inconsistency context and inappropriate services.In this paper,we present an effective algorithm of context inconsistent elimination which is based on feedback and adjusted basic reliability distribution.Through feedback,each sensor's perception precision can be obtained,and with the adjusted basic reliability distribution scheme,we can make full use of all context information by adjusting the influence of every context on whole judgment based on sensor's perception precision and threshold of sensor's perception precision,and then eliminate context inconsistency.In order to evaluate the performance of the proposed context inconsistency elimination algorithm,context aware rate is defined.The simulation results show that the proposed context inconsistency elimination algorithm can obtain the best context aware rate in most cases for the varied error rates of sensors.展开更多
Conditional functional dependencies(CFDs) are important techniques for data consistency. However, CFDs are limited to 1) provide the reasonable values for consistency repairing and 2) detect potential errors. This...Conditional functional dependencies(CFDs) are important techniques for data consistency. However, CFDs are limited to 1) provide the reasonable values for consistency repairing and 2) detect potential errors. This paper presents context-aware conditional functional dependencies(CCFDs) which contribute to provide reasonable values and detect po- tential errors. Especially, we focus on automatically discov- ering minimal CCFDs. In this paper, we present context rela- tivity to measure the relationship of CFDs. The overlap of the related CFDs can provide reasonable values which result in more accuracy consistency repairing, and some related CFDs are combined into CCFDs. Moreover, we prove that discover- ing minimal CCFDs is NP-complete and we design the pre- cise method and the heuristic method. We also present the dominating value to facilitate the process in both the precise method and the heuristic method. Additionally, the context relativity of the CFDs affects the cleaning results. We will give an approximate threshold of context relativity accord- ing to data distribution for suggestion. The repairing results are approved more accuracy, even evidenced by our empirical evaluation.展开更多
基金supported by Scientific Research Foundation for the Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2012DX024)Independent Innovation Foundation of Shandong University(No.2012ZD035)Technical Innovative Project of Shandong Province(No.201230201031,No.201320201024)
文摘In recent years,context aware technology has been widely used in many fields,such as internet of vehicles(IoV).Consistent context information plays a vital role in adapting a system to rapidly changing situations.However,sensor's precision variance,equipment heterogeneity,network delay and the difference of statistical algorithms can lead to inconsistency context and inappropriate services.In this paper,we present an effective algorithm of context inconsistent elimination which is based on feedback and adjusted basic reliability distribution.Through feedback,each sensor's perception precision can be obtained,and with the adjusted basic reliability distribution scheme,we can make full use of all context information by adjusting the influence of every context on whole judgment based on sensor's perception precision and threshold of sensor's perception precision,and then eliminate context inconsistency.In order to evaluate the performance of the proposed context inconsistency elimination algorithm,context aware rate is defined.The simulation results show that the proposed context inconsistency elimination algorithm can obtain the best context aware rate in most cases for the varied error rates of sensors.
文摘Conditional functional dependencies(CFDs) are important techniques for data consistency. However, CFDs are limited to 1) provide the reasonable values for consistency repairing and 2) detect potential errors. This paper presents context-aware conditional functional dependencies(CCFDs) which contribute to provide reasonable values and detect po- tential errors. Especially, we focus on automatically discov- ering minimal CCFDs. In this paper, we present context rela- tivity to measure the relationship of CFDs. The overlap of the related CFDs can provide reasonable values which result in more accuracy consistency repairing, and some related CFDs are combined into CCFDs. Moreover, we prove that discover- ing minimal CCFDs is NP-complete and we design the pre- cise method and the heuristic method. We also present the dominating value to facilitate the process in both the precise method and the heuristic method. Additionally, the context relativity of the CFDs affects the cleaning results. We will give an approximate threshold of context relativity accord- ing to data distribution for suggestion. The repairing results are approved more accuracy, even evidenced by our empirical evaluation.