In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic q...In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.展开更多
Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid mo...Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.展开更多
With the development of image restoration technology based on deep learning,more complex problems are being solved,especially in image semantic inpainting based on context.Nowadays,image semantic inpainting techniques...With the development of image restoration technology based on deep learning,more complex problems are being solved,especially in image semantic inpainting based on context.Nowadays,image semantic inpainting techniques are becoming more mature.However,due to the limitations of memory,the instability of training,and the lack of sample diversity,the results of image restoration are still encountering difficult problems,such as repairing the content of glitches which cannot be well integrated with the original image.Therefore,we propose an image inpainting network based on Wasserstein generative adversarial network(WGAN)distance.With the corresponding technology having been adjusted and improved,we attempted to use the Adam algorithm to replace the traditional stochastic gradient descent,and another algorithm to optimize the training used in recent years.We evaluated our algorithm on the ImageNet dataset.We obtained high-quality restoration results,indicating that our algorithm improves the clarity and consistency of the image.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62262073in part by the Yunnan Provincial Ten Thousand People Program for Young Top Talents under Grant YNWR-QNBJ-2019-237in part by the Yunnan Provincial Major Science and Technology Special Program under Grant 202402AD080002.
文摘In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.
基金Fundamental Research Funds for the Central University,China(No.2232018D3-17)。
文摘Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.
基金supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Project of Provincial Key Laboratory for Computer Information Processing Technology under Grant KJS1935,Soochow University+1 种基金the Priority Academic Program Development of Jiangsu Higher Education InstitutionsGraduate Scientific Research Innovation Program of Jiangsu Province under Grant no.KYCX21_1015.
文摘With the development of image restoration technology based on deep learning,more complex problems are being solved,especially in image semantic inpainting based on context.Nowadays,image semantic inpainting techniques are becoming more mature.However,due to the limitations of memory,the instability of training,and the lack of sample diversity,the results of image restoration are still encountering difficult problems,such as repairing the content of glitches which cannot be well integrated with the original image.Therefore,we propose an image inpainting network based on Wasserstein generative adversarial network(WGAN)distance.With the corresponding technology having been adjusted and improved,we attempted to use the Adam algorithm to replace the traditional stochastic gradient descent,and another algorithm to optimize the training used in recent years.We evaluated our algorithm on the ImageNet dataset.We obtained high-quality restoration results,indicating that our algorithm improves the clarity and consistency of the image.