期刊文献+
共找到541,647篇文章
< 1 2 250 >
每页显示 20 50 100
An accurate retransmission timeout estimator for content-centric networking based on the Jacobson algorithm 被引量:1
1
作者 Mortaza Nikzad Kamal Jamshidi +1 位作者 Ali Bohlooli Faiz Mohammad Faqiry 《Digital Communications and Networks》 SCIE CSCD 2022年第6期1085-1093,共9页
Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, th... Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, the Jacobson algorithm, which is an Exponentially Weighted Moving Average (EWMA) on the Round Trip Time (RTT) of previous packets, is a promising scheme. Assigning the lower bound to RTO, determining how an EWMA rapidly adapts to changes, and setting the multiplier of variance RTT have the most impact on the accuracy of this estimator for which several evaluations have been performed to set them in Transmission Control Protocol/Internet Protocol (TCP/IP) networks. However, the performance of this estimator in CCN has not been explored yet, despite CCN having a significant architectural difference with TCP/IP networks. In this study, two new metrics for assessing the performance of RTO estimators in CCN are defined and the performance of the Jacobson algorithm in CCN is evaluated. This evaluation is performed by varying the minimum RTO, EWMA parameters, and multiplier of variance RTT against different content popularity distribution gains. The obtained results are used to reconsider the Jacobson algorithm for accurately estimating RTO in CCN. Comparing the performance of the reconsidered Jacobson estimator with the existing solutions shows that it can estimate RTO simply and more accurately without any additional information or computation overhead. 展开更多
关键词 content-centric networking Retransnissi on timeout Popularity distribution gain Jacobson RTO estimator
在线阅读 下载PDF
Degree-Based Probabilistic Caching in Content-Centric Networking 被引量:1
2
作者 Meng Zhang Jianqiang Tang +2 位作者 Ying Rao Hongbin Luo Hongke Zhang 《China Communications》 SCIE CSCD 2017年第3期158-168,共11页
Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking ... Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes. 展开更多
关键词 in-network caching implicit cooperation content-centric networking caching performance node degree
在线阅读 下载PDF
COCP:Coupling Parameters Content Placement Strategy for In-Network Caching-Based Content-Centric Networking
3
作者 Salman Rashid Shukor Abd Razak +2 位作者 Fuad A.Ghaleb Faisal Saeed Eman H.Alkhammash 《Computers, Materials & Continua》 SCIE EI 2022年第6期5523-5543,共21页
On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus... On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus of the CCN caching module is data dissemination within the network.Most of the existing strategies of in-network caching in CCN store the content at the maximumnumber of routers along the downloading path.Consequently,content redundancy in the network increases significantly,whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage.Moreover,content redundancy adversely affects the cache resources,hit ratio,latency,bandwidth utilization,and server load.We proposed an in-network caching placement strategy named Coupling Parameters to Optimize Content Placement(COCP)to address the content redundancy and associated problems.The novelty of the technique lies in its capability tominimize content redundancy by creating a balanced cache space along the routing path by considering request rate,distance,and available cache space.The proposed approach minimizes the content redundancy and content dissemination within the network by using appropriate locations while increasing the cache hit ratio and network performance.The COCP is implemented in the simulator(Icarus)to evaluate its performance in terms of the cache hit ratio,path stretch,latency,and link load.Extensive experiments have been conducted to evaluate the proposed COCP strategy.The proposed COCP technique has been compared with the existing state-of-theart techniques,namely,Leave Copy Everywhere(LCE),Leave Copy Down(LCD),ProbCache,Cache Less forMore(CL4M),and opt-Cache.The results obtained with different cache sizes and popularities show that our proposed caching strategy can achieve up to 91.46%more cache hits,19.71%reduced latency,35.43%improved path stretch and 38.14%decreased link load.These results confirm that the proposed COCP strategy has the potential capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks. 展开更多
关键词 content-centric networking on-path caching content redundancy security PRIVACY data dissemination internet of things
在线阅读 下载PDF
A Survey of Applications Research on Content-Centric Networking 被引量:2
4
作者 Xiuquan Qiao Hongyi Wang +3 位作者 Wei Tan Athanasios V.Vasilakos Junliang Chen MBrian Blake 《China Communications》 SCIE CSCD 2019年第9期122-140,共19页
As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholl... As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications. 展开更多
关键词 content-centric networking(CCN) named-data networkING (NDN) APPLICATIONS information-centric networkING FUTURE Internet
在线阅读 下载PDF
An Efficient Update Strategy for Content Synchronization in Content-Centric Networking(CCN)
5
作者 Nidhi Lal Shishupal Kumar Vijay Kumar Chaurasiya 《China Communications》 SCIE CSCD 2019年第1期108-118,共11页
Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The em... Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The emergent proportion of Internet circulation has expectant adjusting Content-centric architecture to enhance serve the user prerequisites of accessing content.In recent years,one of the key aspects of CCN is ubiquitous in-network caching,which has been widely received great attention in research interest.One foremost shortcoming of in-network caching is that content producers have no awareness about where their content is put in storage.Because routers in CCN have caching capabilities,therefore,each and every content router can cache the content item in its storage capacity.This is problematic in the case in which a producer wishes to update or make the changes in its content item.In this paper,we present an approach regarding how to address this issue with a scheme called efficient content update(ECU).Our proposed ECU scheme achieves content update via trifling packets that resemble contemporary CCN communication messages with the use of additional table.We measure the performance of ECU scheme by means of simulations and make available a comprehensive exploration of its results. 展开更多
关键词 content-centric network ROUTING performance CACHING CONTENT delivery
在线阅读 下载PDF
Super Node Routing Strategy in Content-Centric Networking
6
作者 苗春浇 张宏科 +2 位作者 周华春 董平 沈烁 《Transactions of Tianjin University》 EI CAS 2015年第2期122-128,共7页
There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network pe... There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network performance, and Interest flooding led to the network overhead and redundancy as well. As for routing strategy in CCN, each node was required to run the protocol. It was a waste of routing cost and unfit for large-scale deployment.This paper presents the super node routing strategy in CCN. Some super nodes selected from the peer nodes in CCN were used to receive the routing information from their slave nodes and compute the face-to-path to establish forwarding information base(FIB). Then FIB was sent to slave nodes to control and manage the slave nodes. The theoretical analysis showed that the super node routing strategy possessed robustness and scalability, achieved load balancing,reduced the redundancy and improved the network performance. In three topologies, three experiments were carried out to test the super node routing strategy. Network performance results showed that the proposed strategy had a shorter delay, lower CPU utilization and less redundancy compared with CCN. 展开更多
关键词 content-centric networkING ROUTING STRATEGY super NODES SLAVE NODES
在线阅读 下载PDF
A Game Theoretic Approach for Energy-Efficient In-Network Caching in Content-Centric Networks 被引量:4
7
作者 FANG Chao YU F. Richard +2 位作者 HUANG Tao LIU Jiang LIU Yunjie 《China Communications》 SCIE CSCD 2014年第11期135-145,共11页
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq... Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies. 展开更多
关键词 in-network caching contentcentric networking energy efficiency noncooperative game
在线阅读 下载PDF
Exploring Hits-Based Content Provisioning Mechanism in Content-Centric Networking 被引量:2
8
作者 QIAO Xiuquan NAN Guoshun GUO Lei DENG Shushan WANG Youfeng CHEN Junliang 《China Communications》 SCIE CSCD 2014年第7期24-39,共16页
In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Int... In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Interest packets by Pending Interest Table(PIT).In this way,most popular content requests will not reach the origin content server.Thus,content providers will be unaware of the actual usages of their contents in network.This new network paradigm presents content providers with unprecedented challenge.It will bring a great impact on existing mature business model of content providers,such as advertising revenue model based on hits amount.To leverage the advantages of CCN and the realistic business needs of content providers,we explore the hits-based content provisioning mechanism in CCN.The proposed approaches can avoid the unprecedented impact on content providers' existing business model and promote content providers to embrace the real deployment of CCN network. 展开更多
关键词 future internet content-centricnetworking information-centric networking hits-based content provisioning contentprovider business model content management
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
9
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
10
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES network
原文传递
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
11
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
13
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
14
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
15
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
16
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
17
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
18
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Traffic safety helmet wear detection based on improved YOLOv5 network 被引量:1
19
作者 GUI Dongdong SUN Bo 《Optoelectronics Letters》 2025年第1期35-42,共8页
Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving ... Aiming at the problem that the current traffic safety helmet detection model can't balance the accuracy of detection with the size of the model and the poor generalization of the model,a method based on improving you only look once version 5(YOLOv5) is proposed.By incorporating the lightweight Ghost Net module into the YOLOv5 backbone network,we effectively reduce the model size.The addition of the receptive fields block(RFB) module enhances feature extraction and improves the feature acquisition capability of the lightweight model.Subsequently,the high-performance lightweight convolution,GSConv,is integrated into the neck structure for further model size compression.Moreover,the baseline model's loss function is substituted with efficient insertion over union(EIoU),accelerating network convergence and enhancing detection precision.Experimental results corroborate the effectiveness of this improved algorithm in real-world traffic scenarios. 展开更多
关键词 network UNION BACKBONE
原文传递
Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy conditions 被引量:2
20
作者 Lintao Han Hengyi Lv +3 位作者 Chengshan Han Yuchen Zhao Qing Han Hailong Liu 《Journal of Environmental Sciences》 2025年第6期203-218,共16页
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we... Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability. 展开更多
关键词 Remote sensing Image dehazing Environmental monitoring Neural network INTERPRETABILITY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部