Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, th...Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, the Jacobson algorithm, which is an Exponentially Weighted Moving Average (EWMA) on the Round Trip Time (RTT) of previous packets, is a promising scheme. Assigning the lower bound to RTO, determining how an EWMA rapidly adapts to changes, and setting the multiplier of variance RTT have the most impact on the accuracy of this estimator for which several evaluations have been performed to set them in Transmission Control Protocol/Internet Protocol (TCP/IP) networks. However, the performance of this estimator in CCN has not been explored yet, despite CCN having a significant architectural difference with TCP/IP networks. In this study, two new metrics for assessing the performance of RTO estimators in CCN are defined and the performance of the Jacobson algorithm in CCN is evaluated. This evaluation is performed by varying the minimum RTO, EWMA parameters, and multiplier of variance RTT against different content popularity distribution gains. The obtained results are used to reconsider the Jacobson algorithm for accurately estimating RTO in CCN. Comparing the performance of the reconsidered Jacobson estimator with the existing solutions shows that it can estimate RTO simply and more accurately without any additional information or computation overhead.展开更多
Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking ...Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.展开更多
On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus...On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus of the CCN caching module is data dissemination within the network.Most of the existing strategies of in-network caching in CCN store the content at the maximumnumber of routers along the downloading path.Consequently,content redundancy in the network increases significantly,whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage.Moreover,content redundancy adversely affects the cache resources,hit ratio,latency,bandwidth utilization,and server load.We proposed an in-network caching placement strategy named Coupling Parameters to Optimize Content Placement(COCP)to address the content redundancy and associated problems.The novelty of the technique lies in its capability tominimize content redundancy by creating a balanced cache space along the routing path by considering request rate,distance,and available cache space.The proposed approach minimizes the content redundancy and content dissemination within the network by using appropriate locations while increasing the cache hit ratio and network performance.The COCP is implemented in the simulator(Icarus)to evaluate its performance in terms of the cache hit ratio,path stretch,latency,and link load.Extensive experiments have been conducted to evaluate the proposed COCP strategy.The proposed COCP technique has been compared with the existing state-of-theart techniques,namely,Leave Copy Everywhere(LCE),Leave Copy Down(LCD),ProbCache,Cache Less forMore(CL4M),and opt-Cache.The results obtained with different cache sizes and popularities show that our proposed caching strategy can achieve up to 91.46%more cache hits,19.71%reduced latency,35.43%improved path stretch and 38.14%decreased link load.These results confirm that the proposed COCP strategy has the potential capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.展开更多
As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholl...As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.展开更多
Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The em...Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The emergent proportion of Internet circulation has expectant adjusting Content-centric architecture to enhance serve the user prerequisites of accessing content.In recent years,one of the key aspects of CCN is ubiquitous in-network caching,which has been widely received great attention in research interest.One foremost shortcoming of in-network caching is that content producers have no awareness about where their content is put in storage.Because routers in CCN have caching capabilities,therefore,each and every content router can cache the content item in its storage capacity.This is problematic in the case in which a producer wishes to update or make the changes in its content item.In this paper,we present an approach regarding how to address this issue with a scheme called efficient content update(ECU).Our proposed ECU scheme achieves content update via trifling packets that resemble contemporary CCN communication messages with the use of additional table.We measure the performance of ECU scheme by means of simulations and make available a comprehensive exploration of its results.展开更多
There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network pe...There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network performance, and Interest flooding led to the network overhead and redundancy as well. As for routing strategy in CCN, each node was required to run the protocol. It was a waste of routing cost and unfit for large-scale deployment.This paper presents the super node routing strategy in CCN. Some super nodes selected from the peer nodes in CCN were used to receive the routing information from their slave nodes and compute the face-to-path to establish forwarding information base(FIB). Then FIB was sent to slave nodes to control and manage the slave nodes. The theoretical analysis showed that the super node routing strategy possessed robustness and scalability, achieved load balancing,reduced the redundancy and improved the network performance. In three topologies, three experiments were carried out to test the super node routing strategy. Network performance results showed that the proposed strategy had a shorter delay, lower CPU utilization and less redundancy compared with CCN.展开更多
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq...Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.展开更多
In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Int...In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Interest packets by Pending Interest Table(PIT).In this way,most popular content requests will not reach the origin content server.Thus,content providers will be unaware of the actual usages of their contents in network.This new network paradigm presents content providers with unprecedented challenge.It will bring a great impact on existing mature business model of content providers,such as advertising revenue model based on hits amount.To leverage the advantages of CCN and the realistic business needs of content providers,we explore the hits-based content provisioning mechanism in CCN.The proposed approaches can avoid the unprecedented impact on content providers' existing business model and promote content providers to embrace the real deployment of CCN network.展开更多
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha...BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature....Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.Through the integration of network biology,TCM network pharmacology enables systematic evaluation of therapeutic efficacy and detailed elucidation of action mechanisms,establishing a novel research paradigm for TCM modernization.The rapid advancement of machine learning,particularly revolutionary deep learning methods,has substantially enhanced artificial intelligence(AI)technology,offering significant potential to advance TCM network pharmacology research.This paper describes the methodology of TCM network pharmacology,encompassing ingredient identification,network construction,network analysis,and experimental validation.Furthermore,it summarizes key strategies for constructing various networks and analyzing constructed networks using AI methods.Finally,it addresses challenges and future directions regarding cell-cell communication(CCC)-based network construction,analysis,and validation,providing valuable insights for TCM network pharmacology.展开更多
Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single ...Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.展开更多
文摘Accurately estimating of Retransmission TimeOut (RTO) in Content-Centric Networking (CCN) is crucial for efficient rate control in end nodes and effective interface ranking in intermediate routers. Toward this end, the Jacobson algorithm, which is an Exponentially Weighted Moving Average (EWMA) on the Round Trip Time (RTT) of previous packets, is a promising scheme. Assigning the lower bound to RTO, determining how an EWMA rapidly adapts to changes, and setting the multiplier of variance RTT have the most impact on the accuracy of this estimator for which several evaluations have been performed to set them in Transmission Control Protocol/Internet Protocol (TCP/IP) networks. However, the performance of this estimator in CCN has not been explored yet, despite CCN having a significant architectural difference with TCP/IP networks. In this study, two new metrics for assessing the performance of RTO estimators in CCN are defined and the performance of the Jacobson algorithm in CCN is evaluated. This evaluation is performed by varying the minimum RTO, EWMA parameters, and multiplier of variance RTT against different content popularity distribution gains. The obtained results are used to reconsider the Jacobson algorithm for accurately estimating RTO in CCN. Comparing the performance of the reconsidered Jacobson estimator with the existing solutions shows that it can estimate RTO simply and more accurately without any additional information or computation overhead.
基金supported in part by the 973 Program under Grant No.2013CB329100in part by NSFC under Grant No.61422101,62171200,and 62132017+1 种基金in part by the Ph.D. Programs Foundation of MOE of China under Grant No.20130009110014in part by the Fundamental Research Funds for the Central Universities under Grant No.2016JBZ002
文摘Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.
基金This work was supported by Taif University Researchers Supporting Project Number(TURSP-2020/292),Taif University,Taif,Saudi Arabia。
文摘On-path caching is the prominent module in Content-Centric Networking(CCN),equipped with the capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.The main focus of the CCN caching module is data dissemination within the network.Most of the existing strategies of in-network caching in CCN store the content at the maximumnumber of routers along the downloading path.Consequently,content redundancy in the network increases significantly,whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage.Moreover,content redundancy adversely affects the cache resources,hit ratio,latency,bandwidth utilization,and server load.We proposed an in-network caching placement strategy named Coupling Parameters to Optimize Content Placement(COCP)to address the content redundancy and associated problems.The novelty of the technique lies in its capability tominimize content redundancy by creating a balanced cache space along the routing path by considering request rate,distance,and available cache space.The proposed approach minimizes the content redundancy and content dissemination within the network by using appropriate locations while increasing the cache hit ratio and network performance.The COCP is implemented in the simulator(Icarus)to evaluate its performance in terms of the cache hit ratio,path stretch,latency,and link load.Extensive experiments have been conducted to evaluate the proposed COCP strategy.The proposed COCP technique has been compared with the existing state-of-theart techniques,namely,Leave Copy Everywhere(LCE),Leave Copy Down(LCD),ProbCache,Cache Less forMore(CL4M),and opt-Cache.The results obtained with different cache sizes and popularities show that our proposed caching strategy can achieve up to 91.46%more cache hits,19.71%reduced latency,35.43%improved path stretch and 38.14%decreased link load.These results confirm that the proposed COCP strategy has the potential capability to handle the demands of future networks such as the Internet of Things(IoT)and vehicular networks.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61671081in part by the Funds for International Cooperation and Exchange of NSFC under Grant 61720106007+2 种基金in part by the 111 Project under Grant B18008in part by the Beijing Natural Science Foundation under Grant 4172042in part by the Fundamental Research Funds for the Central Universities under Grant 2018XKJC01
文摘As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.
文摘Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The emergent proportion of Internet circulation has expectant adjusting Content-centric architecture to enhance serve the user prerequisites of accessing content.In recent years,one of the key aspects of CCN is ubiquitous in-network caching,which has been widely received great attention in research interest.One foremost shortcoming of in-network caching is that content producers have no awareness about where their content is put in storage.Because routers in CCN have caching capabilities,therefore,each and every content router can cache the content item in its storage capacity.This is problematic in the case in which a producer wishes to update or make the changes in its content item.In this paper,we present an approach regarding how to address this issue with a scheme called efficient content update(ECU).Our proposed ECU scheme achieves content update via trifling packets that resemble contemporary CCN communication messages with the use of additional table.We measure the performance of ECU scheme by means of simulations and make available a comprehensive exploration of its results.
基金Supported by the National Basic Research Program of China("973"Program,No.2013CB329100)Beijing Higher Education Young Elite Teacher Project(No.YETP0534)
文摘There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network performance, and Interest flooding led to the network overhead and redundancy as well. As for routing strategy in CCN, each node was required to run the protocol. It was a waste of routing cost and unfit for large-scale deployment.This paper presents the super node routing strategy in CCN. Some super nodes selected from the peer nodes in CCN were used to receive the routing information from their slave nodes and compute the face-to-path to establish forwarding information base(FIB). Then FIB was sent to slave nodes to control and manage the slave nodes. The theoretical analysis showed that the super node routing strategy possessed robustness and scalability, achieved load balancing,reduced the redundancy and improved the network performance. In three topologies, three experiments were carried out to test the super node routing strategy. Network performance results showed that the proposed strategy had a shorter delay, lower CPU utilization and less redundancy compared with CCN.
基金supported under the National Basic Research Program(973) of China(Project Number: 2012CB315801)the National Natural Science Fund(Project Number:61300184)the fundamental research funds for the Central Universities(Project Number:2013RC0113)
文摘Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.
基金This work was supported by National Key Basic Research Program of China (973 Program) under Grant No. 2012CB315802 National Natural Science Foundation of China under Grant No. 61171102 and No. 61132001 Prospective Research on Future Networks of Jiangsu Future Networks Innovation institute under Grant No. BY2013095-4-01. Beijing Nova Program under Grant No.2008B50 and Beijing Higher Education Young Elite Teacher Project under Grant No.YETP0478.
文摘In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Interest packets by Pending Interest Table(PIT).In this way,most popular content requests will not reach the origin content server.Thus,content providers will be unaware of the actual usages of their contents in network.This new network paradigm presents content providers with unprecedented challenge.It will bring a great impact on existing mature business model of content providers,such as advertising revenue model based on hits amount.To leverage the advantages of CCN and the realistic business needs of content providers,we explore the hits-based content provisioning mechanism in CCN.The proposed approaches can avoid the unprecedented impact on content providers' existing business model and promote content providers to embrace the real deployment of CCN network.
基金Supported by Key Research and Development Program of Shaanxi Province,China,No.2024SF-YBXM-078.
文摘BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2024C03106,X.F.)the National Natural Science Foundation of China(No.82474160,X.S.)+2 种基金the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LBZ24H270001,X.P.)the Major Joint Projects Supported by the National Administration of TCM and Zhejiang Province(No.GZY-ZI-KJ-23037,X.P.)the Ningbo Top Medical and Health Research Program(No.2022030309,X.P.)。
文摘Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.Through the integration of network biology,TCM network pharmacology enables systematic evaluation of therapeutic efficacy and detailed elucidation of action mechanisms,establishing a novel research paradigm for TCM modernization.The rapid advancement of machine learning,particularly revolutionary deep learning methods,has substantially enhanced artificial intelligence(AI)technology,offering significant potential to advance TCM network pharmacology research.This paper describes the methodology of TCM network pharmacology,encompassing ingredient identification,network construction,network analysis,and experimental validation.Furthermore,it summarizes key strategies for constructing various networks and analyzing constructed networks using AI methods.Finally,it addresses challenges and future directions regarding cell-cell communication(CCC)-based network construction,analysis,and validation,providing valuable insights for TCM network pharmacology.
文摘Traditional Chinese medicine(TCM)demonstrates distinctive advantages in disease prevention and treatment.However,analyzing its biological mechanisms through the modern medical research paradigm of“single drug,single target”presents significant challenges due to its holistic approach.Network pharmacology and its core theory of network targets connect drugs and diseases from a holistic and systematic perspective based on biological networks,overcoming the limitations of reductionist research models and showing considerable value in TCM research.Recent integration of network target computational and experimental methods with artificial intelligence(AI)and multi-modal multi-omics technologies has substantially enhanced network pharmacology methodology.The advancement in computational and experimental techniques provides complementary support for network target theory in decoding TCM principles.This review,centered on network targets,examines the progress of network target methods combined with AI in predicting disease molecular mechanisms and drug-target relationships,alongside the application of multi-modal multi-omics technologies in analyzing TCM formulae,syndromes,and toxicity.Looking forward,network target theory is expected to incorporate emerging technologies while developing novel approaches aligned with its unique characteristics,potentially leading to significant breakthroughs in TCM research and advancing scientific understanding and innovation in TCM.