Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.展开更多
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas...For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact t...In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.展开更多
Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal re...Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.展开更多
<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the u...<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and colour similarity. Retrieving images based on the contents which are colour, texture, and shape is called content-based image retrieval (CBIR). This paper discusses and describes about the colour features technique for image retrieval systems. Several colour features technique and algorithms produced by the previous researcher are used to calculate the similarity between extracted features. This paper also describes about the specific technique about the colour basis features and combined features (hybrid techniques) between colour and shape features. </div>展开更多
In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. ...In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. The block features are derived from the hit statistic on a series of concentric ellipse. The comers are detected based on an enhanced SUSAN (Smallest Univalue Segment Assimilating Nucleus) algorithm and the Delaunay Triangulation of comer points are used as the comer features. Experiments have been conducted on the MPEG-7 Core Experiment CE-Shape-1 database of 1 400 images and a trademark database of 2 000 images. The retrieval results are very encouraging.展开更多
An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical ...An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime.展开更多
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact...This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.展开更多
Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divid...Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.展开更多
In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters ...In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.展开更多
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t...In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.展开更多
For news video images, caption recognizing is a useful and important step for content understanding. Caption locating is usually the first step of caption recognizing and this paper proposes a simple but effective cap...For news video images, caption recognizing is a useful and important step for content understanding. Caption locating is usually the first step of caption recognizing and this paper proposes a simple but effective caption locating algorithm called maximum feature score region (MFSR) based method, which mainly consists of two stages: In the first stage, up/down boundaries are attained by turning to edge map projection. Then, maximum feature score region is defined and left/right boundaries are achieved by utilizing MFSR. Experiments show that the proposed MFSR based method has superior and robust performance on news video images of different types.展开更多
A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessor...A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.展开更多
Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequen...Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.展开更多
Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our ...Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our experiments, a batch of hepatic CT images containing several types of CT findings was used and compared with the Zhao's image classification scheme, support vector machines(SVM) scheme and threshold-based scheme.展开更多
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinfor...In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.展开更多
基金supported by the National Natural Science Foundation of China (No.62202137)the China Postdoctoral Science Foundation (No.2023M730599)the Zhejiang Provincial Natural Science Foundation of China (No.LMS25F020009)。
文摘Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
基金Supported by the National Natural Science Foundation of China(51174091,61364013,61164013)Earlier Research Project of the State Key Development Program for Basic Research of China(2014CB360502)
文摘For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.
文摘Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.
基金Acknowledgements: This work is supported by the National Natural Science Foundation of China (Nos. 60832010, 60671064, 60703011) the Chinese National 863 Program (No. 2007AA0 IZ- 458) the research fund for the Doctoral Program of Higher Education (No. RFDP20070213047).
文摘<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and colour similarity. Retrieving images based on the contents which are colour, texture, and shape is called content-based image retrieval (CBIR). This paper discusses and describes about the colour features technique for image retrieval systems. Several colour features technique and algorithms produced by the previous researcher are used to calculate the similarity between extracted features. This paper also describes about the specific technique about the colour basis features and combined features (hybrid techniques) between colour and shape features. </div>
基金Supported by the National High Technology Research and Development Program of China(863 Program) (2006AA01Z129)the 985-2 Project (0000-X07204) of Xiamen University
文摘In order to retrieve a similarly look trademark from a large trademark database, an automatic content based trademark retrieval method using block hit statistic and comer Delaunay Triangulation features was proposed. The block features are derived from the hit statistic on a series of concentric ellipse. The comers are detected based on an enhanced SUSAN (Smallest Univalue Segment Assimilating Nucleus) algorithm and the Delaunay Triangulation of comer points are used as the comer features. Experiments have been conducted on the MPEG-7 Core Experiment CE-Shape-1 database of 1 400 images and a trademark database of 2 000 images. The retrieval results are very encouraging.
基金the Innovation Fund Projects of Cooperation among Industries,Universities & Research Institutes of Jiangsu Province,China(Nos.BY2015019-11,BY2015019-20)the Fundamental Research Funds for the Central Universities,China(Nos.JUSRP51404A,JUSRP211A38)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China(No.[2014].37)
文摘An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime.
文摘This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.
基金This work was supported by the National Natural Science Foundation of China[grant number 41101410]the Comprehensive Transportation Applications of High-resolution Remote Sensing program[grant number 07-Y30B10-9001-14/16]+1 种基金the Key Laboratory of Surveying Mapping and Geoinformation in Geographical Condition Monitoring[grant number 2014NGCM]the Science and Technology Plan of Sichuan Bureau of Surveying,Mapping and Geoinformation,China[grant number J2014ZC02].
文摘Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.
文摘In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.
基金Project supported by the National Natural Science Foundation of China (Grant No.60502039), the Shanghai Rising-Star Program (Grant No.06QA14022), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.
基金supported by National Natural Science Foundation of China(Nos.61272394,61201395 and61472119)the program for Science&Technology Innovation Talents in Universities of Henan Province(No.13HASTIT039)+1 种基金Henan Polytechnic University Innovative Research Team(No.T2014-3)Henan Polytechnic University Fund for Distinguished Young Scholars(No.J2013-2)
文摘For news video images, caption recognizing is a useful and important step for content understanding. Caption locating is usually the first step of caption recognizing and this paper proposes a simple but effective caption locating algorithm called maximum feature score region (MFSR) based method, which mainly consists of two stages: In the first stage, up/down boundaries are attained by turning to edge map projection. Then, maximum feature score region is defined and left/right boundaries are achieved by utilizing MFSR. Experiments show that the proposed MFSR based method has superior and robust performance on news video images of different types.
文摘A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.
文摘Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.
基金the National Natural Science Foundation of China (No. 30770589)
文摘Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our experiments, a batch of hepatic CT images containing several types of CT findings was used and compared with the Zhao's image classification scheme, support vector machines(SVM) scheme and threshold-based scheme.
文摘In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.