Although content caching and recommendation are two complementary approaches to improve the user experience,it is still challenging to provide an integrated paradigm to fully explore their potential,due to the high co...Although content caching and recommendation are two complementary approaches to improve the user experience,it is still challenging to provide an integrated paradigm to fully explore their potential,due to the high complexity and complicated tradeoff relationship.To provide an efficient management framework,the joint design of content delivery and recommendation in wireless content caching networks is studied in this paper.First,a joint transmission scheme of content objects and recommendation lists is designed with edge caching,and an optimization problem is formulated to balance the utility and cost of content caching and recommendation,which is an mixed integer nonlinear programming problem.Second,a reinforcement learning based algorithm is proposed to implement real time management of content caching,recommendation and delivery,which can approach the optimal solution without iterations during each decision epoch.Finally,the simulation results are provided to evaluate the performance of our proposed scheme,which show that it can achieve lower cost than the existing content caching and recommendation schemes.展开更多
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ...Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.展开更多
基金supported by Beijing Natural Science Foundation(Grant L182039),and National Natural Science Foundation of China(Grant 61971061).
文摘Although content caching and recommendation are two complementary approaches to improve the user experience,it is still challenging to provide an integrated paradigm to fully explore their potential,due to the high complexity and complicated tradeoff relationship.To provide an efficient management framework,the joint design of content delivery and recommendation in wireless content caching networks is studied in this paper.First,a joint transmission scheme of content objects and recommendation lists is designed with edge caching,and an optimization problem is formulated to balance the utility and cost of content caching and recommendation,which is an mixed integer nonlinear programming problem.Second,a reinforcement learning based algorithm is proposed to implement real time management of content caching,recommendation and delivery,which can approach the optimal solution without iterations during each decision epoch.Finally,the simulation results are provided to evaluate the performance of our proposed scheme,which show that it can achieve lower cost than the existing content caching and recommendation schemes.
基金would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.