1 IntroductionThe screen content coding (SCC) standard [1] for high efficiency video coding (HEVC) is an international standard specially developed for screen content.
A screen content coding (SCC) algorithm that uses a primary reference buffer (PRB) and a secondary reference buffer (SRB) for string matching and string copying is proposed. PRB is typically the traditional reco...A screen content coding (SCC) algorithm that uses a primary reference buffer (PRB) and a secondary reference buffer (SRB) for string matching and string copying is proposed. PRB is typically the traditional reconstructed picture buffer which provides reference string pixels for the current pixels being coded. SRB stores a few of recently and frequently referenced pixels for repetitive reference by the current pixels being coded. In the encoder, searching of optimal reference string is performed in both PRB and SRB, and either a PRB or SRB string is selected as an optimal reference string on a string-by-string basis. Compared with HM-16.4+SCM-40 reference software, the proposed SCC algorithm can improve coding performance measured by bit-distortion rate reduction of average 4.19% in all-intra configuration for text and graphics with motion category' of test sequences defined by JCT-VC common test condition.展开更多
The predominant use of today's networks is content access and distribution. Network Coding (NC) is an innovative technique that has potential to improve the efficiency of multicast content distribution over multiho...The predominant use of today's networks is content access and distribution. Network Coding (NC) is an innovative technique that has potential to improve the efficiency of multicast content distribution over multihop Wireless Mesh Networks (WMNs) by allowing intermediate Forwarding Nodes (FNs) to encode and then forward data packets. Practical protocols are needed to realize the benefits of the NC technique. However, the existing NC-based multicast protocols cannot accurately determine the minimum number of coded packets that a FN should send in order to ensure successful data delivery to the destinations, so that many redundant packets are injected into the network, leading to performance degradation. In this paper, we propose HopCaster, a novel reliable multicast protocol that incorporates network coding with hop-by-hop transport. HopCaster completely eliminates the need for estimating the number of coded packets to be transmitted by a FN, and avoids redundant packet transmissions. It also effectively addresses the challenges of heterogeneous mulficast receivers. Moreover, a cross-layer multicast rate adaptation mechanism is proposed, which enables HopCaster to optimize multicast throughput by dynamically adjusting wireless transmission rate based on the changes in the receiver population and channel conditions during the course of mulficasting a coded data chunk. Our evaluations show that HopCaster significantly outperforms the existing NC-based multicast protocols.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
基金supported in part by National Natural Science Foundation of China under Grant No.61201226 and 61271096Specialized Research Fund for the Doctoral Program under Grant No.20130072110054
文摘1 IntroductionThe screen content coding (SCC) standard [1] for high efficiency video coding (HEVC) is an international standard specially developed for screen content.
基金supported in part by National Natural Science Foundation of China under Grant No.61201226 and 61271096Natural Science Foundation of Shanghai under Grant No.12ZR1433800Specialized Research Fund for the Doctoral Program under Grant No.20130072110054
文摘A screen content coding (SCC) algorithm that uses a primary reference buffer (PRB) and a secondary reference buffer (SRB) for string matching and string copying is proposed. PRB is typically the traditional reconstructed picture buffer which provides reference string pixels for the current pixels being coded. SRB stores a few of recently and frequently referenced pixels for repetitive reference by the current pixels being coded. In the encoder, searching of optimal reference string is performed in both PRB and SRB, and either a PRB or SRB string is selected as an optimal reference string on a string-by-string basis. Compared with HM-16.4+SCM-40 reference software, the proposed SCC algorithm can improve coding performance measured by bit-distortion rate reduction of average 4.19% in all-intra configuration for text and graphics with motion category' of test sequences defined by JCT-VC common test condition.
文摘The predominant use of today's networks is content access and distribution. Network Coding (NC) is an innovative technique that has potential to improve the efficiency of multicast content distribution over multihop Wireless Mesh Networks (WMNs) by allowing intermediate Forwarding Nodes (FNs) to encode and then forward data packets. Practical protocols are needed to realize the benefits of the NC technique. However, the existing NC-based multicast protocols cannot accurately determine the minimum number of coded packets that a FN should send in order to ensure successful data delivery to the destinations, so that many redundant packets are injected into the network, leading to performance degradation. In this paper, we propose HopCaster, a novel reliable multicast protocol that incorporates network coding with hop-by-hop transport. HopCaster completely eliminates the need for estimating the number of coded packets to be transmitted by a FN, and avoids redundant packet transmissions. It also effectively addresses the challenges of heterogeneous mulficast receivers. Moreover, a cross-layer multicast rate adaptation mechanism is proposed, which enables HopCaster to optimize multicast throughput by dynamically adjusting wireless transmission rate based on the changes in the receiver population and channel conditions during the course of mulficasting a coded data chunk. Our evaluations show that HopCaster significantly outperforms the existing NC-based multicast protocols.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.