期刊文献+
共找到319篇文章
< 1 2 16 >
每页显示 20 50 100
Video Recommendation System Using Machine-Learning Techniques
1
作者 Meesala Sravani Ch Vidyadhari S Anjali Devi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期24-33,共10页
In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is fini... In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is finished by utilizing machine learning strategies.A suggestion framework is an interaction of data sifting framework,which is utilized to foresee the“rating”or“inclination”given by the different clients.The expectation depends on past evaluations,history,interest,IMDB rating,and so on.This can be carried out by utilizing collective and substance-based separating approaches which utilize the data given by the different clients,examine them,and afterward suggest the video that suits the client at that specific time.The required datasets for the video are taken from Grouplens.This recommender framework is executed by utilizing Python Programming Language.For building this video recommender framework,two calculations are utilized,for example,K-implies Clustering and KNN grouping.K-implies is one of the unaided AI calculations and the fundamental goal is to bunch comparable sort of information focuses together and discover the examples.For that K-implies searches for a steady‘k'of bunches in a dataset.A group is an assortment of information focuses collected due to specific similitudes.K-Nearest Neighbor is an administered learning calculation utilized for characterization,with the given information;KNN can group new information by examination of the‘k'number of the closest information focuses.The last qualities acquired are through bunching qualities and root mean squared mistake,by using this algorithm we can recommend videos more appropriately based on user previous records and ratings. 展开更多
关键词 video recommendation system KNN algorithms collaborative filtering content⁃based filtering classification algorithms artificial intelligence
在线阅读 下载PDF
Research on Social Tags Recommendation Techniques Based on Content
2
作者 Yang Song Zhi-Li Liu Li-Jie Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期74-80,共7页
With the rapid development of the Internet,more and more people begin to pay attention to social tagging which is a flexible and efficient method for classification. How to retrieve tags from the huge tag library beco... With the rapid development of the Internet,more and more people begin to pay attention to social tagging which is a flexible and efficient method for classification. How to retrieve tags from the huge tag library becomes a hot topic to research. Firstly,the existing systems of social tags and its recommendation principles used in Web 2. 0 are introduced in this paper. Secondly,the existing techniques about tag recommendation are summarized,and their merits and demerits are analysed. In most techniques for tag recommendation only two dimensions "resource-user " are considered. But there are three dimensions "resource-user-tag " in recommendation system based on social tags. A new method of social tag recommendation based on content-Feature Vote Tagging ( FVT) is proposed in this paper. Finally,several kinds of evaluation methods are used to assess the return results of methods. The experiment results show that the method proposed in this paper can satisfy the expectation of the user for the recommendation results. 展开更多
关键词 SOCIAL tags TAG recommendation content FEATURE Web2. 0
在线阅读 下载PDF
Joint Design of Content Delivery and Recommendation in Wireless Caching Networks
3
作者 Zhongyuan Zhao Huihui Gao +2 位作者 Wei Hong Xiaoyu Duan Mugen Peng 《China Communications》 SCIE CSCD 2021年第11期61-75,共15页
Although content caching and recommendation are two complementary approaches to improve the user experience,it is still challenging to provide an integrated paradigm to fully explore their potential,due to the high co... Although content caching and recommendation are two complementary approaches to improve the user experience,it is still challenging to provide an integrated paradigm to fully explore their potential,due to the high complexity and complicated tradeoff relationship.To provide an efficient management framework,the joint design of content delivery and recommendation in wireless content caching networks is studied in this paper.First,a joint transmission scheme of content objects and recommendation lists is designed with edge caching,and an optimization problem is formulated to balance the utility and cost of content caching and recommendation,which is an mixed integer nonlinear programming problem.Second,a reinforcement learning based algorithm is proposed to implement real time management of content caching,recommendation and delivery,which can approach the optimal solution without iterations during each decision epoch.Finally,the simulation results are provided to evaluate the performance of our proposed scheme,which show that it can achieve lower cost than the existing content caching and recommendation schemes. 展开更多
关键词 wireless caching networks content caching content recommendation deep reinforcement learning resource management
在线阅读 下载PDF
On recommendation-aware content caching for 6G:An artificial intelligence and optimization empowered paradigm
4
作者 Yaru Fu Khai Nguyen Doan Tony Q.S.Quek 《Digital Communications and Networks》 SCIE 2020年第3期304-311,共8页
Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effec... Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effectiveness of RCC strategies is highly dependent on explicit information as regards subscribers’content request patterns,the sophisticated caching placement policy,and the personalized recommendation tactics.In this article,we investigate how the potentials of Artificial Intelligence(AI)and optimization techniques can be harnessed to address those core issues and facilitate the full implementation of RCC for the upcoming intelligent 6G era.Towards this end,we first elaborate on the hierarchical RCC network architecture.Then,the devised AI and optimization empowered paradigm is introduced,whereas AI and optimization techniques are leveraged to predict the users’content preferences in real-time situations with the assistance of their historical behavior data and determine the cache pushing and recommendation decision,respectively.Through extensive case studies,we validate the effectiveness of AI-based predictors in estimating users’content preference and the superiority of optimized RCC policies over the conventional benchmarks.At last,we shed light on the opportunities and challenges in the future. 展开更多
关键词 Artificial intelligence content caching Optimization techniques recommendation 6G
在线阅读 下载PDF
Ontology-based framework for personalized recommendation in digital libraries 被引量:3
5
作者 颜端武 岑咏华 +1 位作者 张炜 毛平 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期385-388,共4页
To promote information service ability of digital libraries, a browsing and searching personalized recommendation framework based on the use of ontology is described, where the advantages of ontology are exploited in ... To promote information service ability of digital libraries, a browsing and searching personalized recommendation framework based on the use of ontology is described, where the advantages of ontology are exploited in different parts of the retrieval cycle including query-based relevance measures, semantic user preference representation and automatic update, and personalized result ranking. Both the usage and information resources can be exploited to extract useful knowledge from the way users interact with a digital library. Through combination and mapping between the extracted knowledge and domain ontology, semantic content retrieval between queries and documents can be utilized. Furthermore, ontology-based conceptual vector of user preference can be applied in personalized recommendation feedback. 展开更多
关键词 digital library personalized recommendation ONTOLOGY content retrieval user preference
在线阅读 下载PDF
Dynamic Trust Model Based on Service Recommendation in Big Data 被引量:2
6
作者 Gang Wang Mengjuan Liu 《Computers, Materials & Continua》 SCIE EI 2019年第3期845-857,共13页
In big data of business service or transaction,it is impossible to provide entire information to both of services from cyber system,so some service providers made use of maliciously services to get more interests.Trus... In big data of business service or transaction,it is impossible to provide entire information to both of services from cyber system,so some service providers made use of maliciously services to get more interests.Trust management is an effective solution to deal with these malicious actions.This paper gave a trust computing model based on service-recommendation in big data.This model takes into account difference of recommendation trust between familiar node and stranger node.Thus,to ensure accuracy of recommending trust computing,paper proposed a fine-granularity similarity computing method based on the similarity of service concept domain ontology.This model is more accurate in computing trust value of cyber service nodes and prevents better cheating and attacking of malicious service nodes.Experiment results illustrated our model is effective. 展开更多
关键词 Trust model recommendation trust content similarity ONTOLOGY big data.
在线阅读 下载PDF
An E-Commerce Recommender System Based on Content-Based Filtering 被引量:3
7
作者 HE Weihong CAO Yi 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1091-1096,共6页
Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products ... Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented. 展开更多
关键词 E-COMMERCE recommender system personalized recommendation content-based filtering Vector Spatial Model(VSM)
在线阅读 下载PDF
UP-TreeRec: Building Dynamic User Profiles Tree for News Recommendation 被引量:1
8
作者 Ming He Xiaofei Wu +1 位作者 Jiuling Zhang Ruihai Dong 《China Communications》 SCIE CSCD 2019年第4期219-233,共15页
Online news recommendation systems aim to address the information explosion of news and make personalized recommendations for users. The key problem of personalized news recommendation is to model users' interests... Online news recommendation systems aim to address the information explosion of news and make personalized recommendations for users. The key problem of personalized news recommendation is to model users' interests and track their changes. A common way to deal with the user modeling problem is to build user profiles from observed behavior. However, the majority of existing methods make static representations of user profiles and little research has focused on effective user modeling that could dynamically capture user interests in news topics. To address this problem, in this paper, we propose UP-TreeRec, a news recommendation framework based on a user profile tree(UP-Tree), which is a novel framework combining content-based and collaborative filtering techniques. First, by exploiting a novel topic model namely UILDA, we obtain the representation vectors for news content in a topic space as the fundamental bridge to associate user interests with news topics. Next, we design a decision tree with a dynamically changeable structure to construct a user interest profile from the user's feedback. Furthermore, we present a clustering-based multidimensional similarity computation method to select the nearest neighbor of the UP-Tree efficiently. We also provide a Map-Reduce framework-based implemen-tation that enables scaling our solution to real-world news recommendation problems. We conducted several experiments compared to the state-of-the-art approaches on real-world datasets and the experimental results demonstrate that our approach significantly improves accuracy and effectiveness in news recommendation. 展开更多
关键词 NEWS recommendation user PROFILING content-BASED recommendation COLLABORATIVE filtering
在线阅读 下载PDF
内容平台个性化推荐合理性:构念与效应 被引量:5
9
作者 李桂华 王曼旌 《现代情报》 北大核心 2025年第3期10-24,共15页
[目的/意义]个性化推荐已经被广泛运用于各大内容平台的商业化发展之中,用户对其的认知亦愈加深刻。现有研究虽然已经出现大量基于用户角度的推荐算法评价研究,但从道德维度对个性化推荐算法的评价研究匮乏。因此,本文聚焦道德维度,探... [目的/意义]个性化推荐已经被广泛运用于各大内容平台的商业化发展之中,用户对其的认知亦愈加深刻。现有研究虽然已经出现大量基于用户角度的推荐算法评价研究,但从道德维度对个性化推荐算法的评价研究匮乏。因此,本文聚焦道德维度,探讨内容平台个性化推荐的合理性及其对用户持续使用意愿的影响,以填补这一研究空白。[方法/过程]本研究从用户和公共利益角度出发,运用规范分析法提出了内容平台个性化推荐合理性这一新概念及其3个维度:技术合理性、内容合理性和伦理合理性,基于文献梳理提炼可操作化指标,构建量表,并依托期望确认理论模型建立推荐合理性对用户持续使用意愿的影响模型,通过实证方法探究其作用机制。[结果/结论]结果显示,新开发的内容平台个性化推荐合理性量表具有很高的信度和效度,且个性化推荐合理性对用户持续使用意愿存在显著的正向影响。 展开更多
关键词 内容平台 个性化推荐 合理性 用户满意度 持续使用意愿
在线阅读 下载PDF
推荐算法驱动内容平台价值创造的机理:相关还是因果? 被引量:4
10
作者 江积海 周彩虹 王烽权 《外国经济与管理》 北大核心 2025年第2期3-19,共17页
本文遵循“动因→机理→价值”研究主线,基于相关型和因果型两类典型推荐算法,以抖音和网飞为双案例研究对象,归纳出推荐算法驱动内容平台发展的价值动因,剖析不同价值动因驱动价值创造的机理,由此提出推荐算法驱动内容平台价值创造的... 本文遵循“动因→机理→价值”研究主线,基于相关型和因果型两类典型推荐算法,以抖音和网飞为双案例研究对象,归纳出推荐算法驱动内容平台发展的价值动因,剖析不同价值动因驱动价值创造的机理,由此提出推荐算法驱动内容平台价值创造的理论框架。研究发现:相关型推荐算法主导的内容平台价值动因是“人以群分”和“物以类聚”,通过产生学习效应与范围经济,创造“流量”价值;因果型推荐算法主导的内容平台价值动因是“人尽其才”和“物尽其用”,通过产生复利效应和速度经济,创造“留量”价值。本文丰富了算法驱动商业模式价值创造的研究,对于进一步探索智能化商业模式有启发意义。 展开更多
关键词 商业模式 内容平台 推荐算法 价值创造
原文传递
Application of Personalized Recommendation System in Music Platform
11
作者 Sun Nan Liu Borui +1 位作者 Liu Meiran Cui Jizhe 《管理科学与研究(中英文版)》 2017年第1期1-7,共7页
在线阅读 下载PDF
高等学校化学类专业有机化学理论课程教学内容调研与建议
12
作者 王彦广 惠新平 +2 位作者 丁玉强 刘晨江 陆展 《大学化学》 2025年第2期151-158,共8页
为了更好地开展高等学校有机化学课程建设,不断提高有机化学理论课教学质量,受教育部高等学校化学类专业教学指导委员会委托,我们对国内化学类专业有机化学课程的学时和教学内容等情况开展了调研,本文对此次调研结果进行了分析、对比和... 为了更好地开展高等学校有机化学课程建设,不断提高有机化学理论课教学质量,受教育部高等学校化学类专业教学指导委员会委托,我们对国内化学类专业有机化学课程的学时和教学内容等情况开展了调研,本文对此次调研结果进行了分析、对比和总结,找出了有机化学教学中存在的一些问题,并对有机化学课程教学内容优化提出了建议。 展开更多
关键词 化学类专业 有机化学 教学内容 问卷调查 教学建议
在线阅读 下载PDF
基于大语言模型的可信多模态推荐算法
13
作者 闫萌 徐偲 +2 位作者 黄海槟 赵伟 管子玉 《计算机研究与发展》 北大核心 2025年第7期1611-1621,共11页
序列推荐的核心在于从用户的交互序列中挖掘其偏好和行为模式.现有研究已经认识到单一模态交互数据存在不足,因此借助大量多模态数据(如商品评价、主页图片等)来丰富交互信息,提升推荐系统的性能.然而,这些多模态数据中常常夹杂着不可... 序列推荐的核心在于从用户的交互序列中挖掘其偏好和行为模式.现有研究已经认识到单一模态交互数据存在不足,因此借助大量多模态数据(如商品评价、主页图片等)来丰富交互信息,提升推荐系统的性能.然而,这些多模态数据中常常夹杂着不可避免的噪声,可能会限制用户个性化偏好的探索.尽管可以通过抑制模态间不一致的信息来减少噪声干扰,但要完全消除用户生成的多模态内容中的噪声几乎是不可能的.针对上述挑战,提出了一种基于大语言模型的可信多模态推荐算法,旨在于含噪多模态数据场景下提供可信的推荐结果.具体而言,该算法依托于大语言模型卓越的自然语言理解能力,高效过滤多模态数据中的噪声,实现对用户偏好更为精确和细致的建模.此外,还设计了一种可信决策机制,用于动态评估推荐结果的不确定性,以确保在高风险场景下推荐结果的可用性.在4个广泛使用的公开数据集上的实验结果显示,相较于其他基线算法,提出的算法有更好的性能表现.代码可以在https://github.com/hhbray/Large-TR获取. 展开更多
关键词 序列推荐 多模态 用户生成内容 可信决策 大语言模型
在线阅读 下载PDF
基于内容偏好和情绪倾向的微博用户兴趣画像构建方法 被引量:1
14
作者 徐建民 王铭宇 《河北大学学报(自然科学版)》 北大核心 2025年第1期91-103,共13页
微博数据的爆炸式增长,使信息筛选变得越来越困难.构建合理的微博用户兴趣画像,有助于实现精准化服务,提高推荐性能.首先,利用LDA(latent Dirichlet allocation)模型从用户历史内容中挖掘用户的内容偏好特征,并通过情绪分析模型计算用... 微博数据的爆炸式增长,使信息筛选变得越来越困难.构建合理的微博用户兴趣画像,有助于实现精准化服务,提高推荐性能.首先,利用LDA(latent Dirichlet allocation)模型从用户历史内容中挖掘用户的内容偏好特征,并通过情绪分析模型计算用户不同内容偏好对应的情绪倾向,得到包含内容偏好及其对应情绪倾向2个维度的用户兴趣画像;在基于用户兴趣画像进行微博推荐评估时,利用用户内容偏好进行初步筛选,比较待评估博文内容与用户的内容偏好是否匹配,若匹配则进一步通过情绪倾向进行过滤,比较同一内容偏好下的情绪相似度,选取高于阈值的博文加入推荐集.真实微博数据集的实验结果表明,与基于标签的推荐模型、基于情感关联规则的推荐模型和基于主题的推荐模型相比,本文微博推荐方法具有更好的性能,在F1值上分别提升了10%、6%和2%. 展开更多
关键词 用户兴趣画像 内容偏好 情绪倾向 微博推荐
在线阅读 下载PDF
移动边缘网络的内容缓存和推荐联合决策方案
15
作者 周继鹏 唐飘 《计算机应用研究》 北大核心 2025年第10期3114-3121,共8页
在移动边缘网络实现内容缓存是减轻后向链路负载和提高用户体验的有效方法。最近研究发现缓存与推荐结合能有效地提高边缘缓存的效率和减少网络传输的时延。在支持推荐的协同边缘缓存网络模型下,将边缘网络的缓存和内容推荐问题建模为... 在移动边缘网络实现内容缓存是减轻后向链路负载和提高用户体验的有效方法。最近研究发现缓存与推荐结合能有效地提高边缘缓存的效率和减少网络传输的时延。在支持推荐的协同边缘缓存网络模型下,将边缘网络的缓存和内容推荐问题建模为多智能体多臂轮赌问题。首先,利用GCN模型预测用户偏好,获得内容流行度;其次,通过用户对内容推荐的容忍度定义推荐探索窗口,设计了探索与利用策略以及收益更新策略,提出一个基于多臂轮赌的缓存和推荐策略联合求解算法MAMAB-JCR,实现缓存和推荐联合决策;最后,将算法MAMAB-JCR与三种不同类型的基线算法(DDQN、JCCR和MAMAB-C)进行了实验比较。实验结果表明MAMAB-JCR降低了内容传输时延,提高了缓存命中率,提升用户体验。 展开更多
关键词 移动边缘网络 协同缓存 内容推荐 多臂轮赌 强化学习
在线阅读 下载PDF
AI算法在智能电视内容推荐系统中的应用
16
作者 蒋丽娜 《电视技术》 2025年第2期200-202,共3页
随着智能电视的普及,用户对个性化内容推荐的需求急剧增加,传统推荐系统已难以处理复杂的用户行为和海量数据,人工智能(Artificial Intelligence,AI)算法成为新兴解决方案。对此,探讨AI算法在智能电视内容推荐系统中的应用,涵盖协同过... 随着智能电视的普及,用户对个性化内容推荐的需求急剧增加,传统推荐系统已难以处理复杂的用户行为和海量数据,人工智能(Artificial Intelligence,AI)算法成为新兴解决方案。对此,探讨AI算法在智能电视内容推荐系统中的应用,涵盖协同过滤、深度学习、强化学习及自然语言处理技术,分析各类算法的核心技术及其在提高推荐精度和用户体验方面的作用。 展开更多
关键词 推荐算法 智能电视 内容推荐系统
在线阅读 下载PDF
基于Spark的影视推荐系统的设计与实现 被引量:1
17
作者 张志刚 游凤芹 +1 位作者 谢叶康 李健 《现代信息科技》 2025年第1期82-87,共6页
在当今信息爆炸的时代,用户在选择影视作品时面临海量的选择。针对当前影视推荐系统在推荐精度、管理效率和扩展性上的不足,文章提出了一种基于Spark框架的解决方案。文章采用Spring Boot和Vue框架进行前后端分离开发,利用Scala编写的Sp... 在当今信息爆炸的时代,用户在选择影视作品时面临海量的选择。针对当前影视推荐系统在推荐精度、管理效率和扩展性上的不足,文章提出了一种基于Spark框架的解决方案。文章采用Spring Boot和Vue框架进行前后端分离开发,利用Scala编写的Spark应用程序结合内容推荐算法,对用户行为数据进行处理和分析。实验结果表明,该系统在大规模数据处理方面表现优异,显著提升了推荐准确率和用户满意度,且具备良好的可扩展性,整体提升了系统的运行效率和用户体验。 展开更多
关键词 SPARK Spring Boot Vue Scala 基于内容的影视推荐
在线阅读 下载PDF
面向公众的AI驱动健康教育视频内容推荐系统的设计与优化 被引量:1
18
作者 朱虎韬 《办公自动化》 2025年第7期55-57,共3页
短视频模式的发展极大地推动内容推荐系统的优化,这为健康食品、科普视频等类型的视频推广也构建良好的外部环境。文章就此对互联网媒体跨平台融合背景下的健康教育视频内容推荐系统进行分析,探讨其架构和算法选择,从而说明整体视频内... 短视频模式的发展极大地推动内容推荐系统的优化,这为健康食品、科普视频等类型的视频推广也构建良好的外部环境。文章就此对互联网媒体跨平台融合背景下的健康教育视频内容推荐系统进行分析,探讨其架构和算法选择,从而说明整体视频内容推荐系统的建设。与此同时,AI技术的优化也为系统建设提供良好的技术支持,深度学习算法能更好地识别用户未能直接标注的视频偏好,通过更为丰富的视频浏览和搜索特征细节补充与完善原有视频内容推荐系统的不足,通过更为丰富的数据化标签适应于用户规模的增长,并相应提升用户体验,且相应优化资源调度能力而提升系统响应速度和实时性,从而为健康教育的个性化发展提供良好环境。 展开更多
关键词 AI驱动 科普视频 健康教育视频 内容推荐系统
在线阅读 下载PDF
中药配方颗粒纳入医保报销政策发展脉络与内容优化建议
19
作者 张宇 郭斯伦 《中国药业》 2025年第8期11-16,共6页
目的为中药配方颗粒纳入基本医疗保险(简称医保)政策的完善和产业的良好均衡发展提供参考。方法梳理国家和地方层面的相关中药配方颗粒纳入医保报销政策文本,分析政策现存问题,并提出优化建议。结果中药配方颗粒两层级标准的建设均尚待... 目的为中药配方颗粒纳入基本医疗保险(简称医保)政策的完善和产业的良好均衡发展提供参考。方法梳理国家和地方层面的相关中药配方颗粒纳入医保报销政策文本,分析政策现存问题,并提出优化建议。结果中药配方颗粒两层级标准的建设均尚待完善;部分省级标准的备案进度缓慢,影响整体标准制定进度;各省(区、市)在医保支持方面的力度存在显著差异,部分省(区、市)的新政策在惠民方面的效果欠佳;对于抵制地方保护主义的政策尚不够具体明确,为集中采购政策的实施埋下隐患。结论应加快标准制定进程,以实现医保政策优势的最大化;深入进行药物基础性研究,为省级标准备案工作提供有力支持;采取综合措施,协同发力,提升政策效果;构建全过程监管机制,防控集中采购过程中可能出现的潜在风险。 展开更多
关键词 中药配方颗粒 医保报销 政策文本分析 发展脉络 优化建议
暂未订购
Multi-Label Movie Genre Classification with Attention Mechanism on Movie Plots
20
作者 Faheem Shaukat Naveed Ejaz +3 位作者 Rashid Kamal Tamim Alkhalifah Sheraz Aslam Mu Mu 《Computers, Materials & Continua》 2025年第6期5595-5622,共28页
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ... Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques. 展开更多
关键词 Multi-label classification artificial intelligence movie genre classification hierarchical attention mechanisms natural language processing content recommendation text-based genre classification explainable AI(Artificial Intelligence) transformer models BERT
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部