In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected re...In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected resource request spikes,the engine is limited to the current workflow load information for resource allocation,which lacks the agility and predictability of resource allocation,resulting in over and underprovisioning resources.This mechanism seriously hinders workflow execution efficiency and leads to high resource waste.To overcome these drawbacks,we propose an adaptive resource allocation scheme named adaptive resource allocation scheme(ARAS)for the Kubernetes-based workflow engines.Considering potential future workflow task requests within the current task pod’s lifecycle,the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios.The ARAS offers resource discovery,resource evaluation,and allocation functionalities and serves as a key component for our tailored workflow engine(KubeAdaptor).By integrating the ARAS into KubeAdaptor for workflow containerized execution,we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS.Compared with the baseline algorithm,experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows,time-saving of 26.4% to 79.86% in the average duration of individual workflow,and an increase of 1% to 16% in centrol processing unit(CPU)and memory resource usage rate.展开更多
The containerized shipment of freight continues to grow rapidly. This development can be traced to a transformation of bulk and break-bulk service to containerization. Demand has been driven by opportunities to broade...The containerized shipment of freight continues to grow rapidly. This development can be traced to a transformation of bulk and break-bulk service to containerization. Demand has been driven by opportunities to broaden logistical options as well as advantageous freight rates. Logisticians and policy makers are unsure how much more bulk traffic can be converted to containerization, but the trends are evident. Of particular interest is grain. Bulk grain handlers have successfully resisted the conversion of grain shipping to containerization, except on the North American-Asian traffic lanes and the Australian-Asian traffic lanes where growth has been significant. This paper reviews the theoretical case for grain containerization from a logistics perspective, followed by an examination of the current trends in the United States and Canada. Subsequently, the analysis considers the restrictions and resistance to the conversion of grain from bulk shipping to containerization.展开更多
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ...The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.展开更多
Kubernetes has become the dominant container orchestration platform,withwidespread adoption across industries.However,its default pod-to-pod communicationmechanism introduces security vulnerabilities,particularly IP s...Kubernetes has become the dominant container orchestration platform,withwidespread adoption across industries.However,its default pod-to-pod communicationmechanism introduces security vulnerabilities,particularly IP spoofing attacks.Attackers can exploit this weakness to impersonate legitimate pods,enabling unauthorized access,lateral movement,and large-scale Distributed Denial of Service(DDoS)attacks.Existing security mechanisms such as network policies and intrusion detection systems introduce latency and performance overhead,making them less effective in dynamic Kubernetes environments.This research presents PodCA,an eBPF-based security framework designed to detect and prevent IP spoofing in real time while minimizing performance impact.PodCA integrates with Kubernetes’Container Network Interface(CNI)and uses eBPF to monitor and validate packet metadata at the kernel level.It maintains a container network mapping table that tracks pod IP assignments,validates packet legitimacy before forwarding,and ensures network integrity.If an attack is detected,PodCA automatically blocks spoofed packets and,in cases of repeated attempts,terminates compromised pods to prevent further exploitation.Experimental evaluation on an AWS Kubernetes cluster demonstrates that PodCA detects and prevents spoofed packets with 100%accuracy.Additionally,resource consumption analysis reveals minimal overhead,with a CPU increase of only 2–3%per node and memory usage rising by 40–60 MB.These results highlight the effectiveness of eBPF in securing Kubernetes environments with low overhead,making it a scalable and efficient security solution for containerized applications.展开更多
The ongoing development of small molecule drugs underscores the urgent need for novel excipients to formulate poorly soluble drug candidates.Cucurbit[7]uril(CB[7])possesses high binding affinities for a variety of mol...The ongoing development of small molecule drugs underscores the urgent need for novel excipients to formulate poorly soluble drug candidates.Cucurbit[7]uril(CB[7])possesses high binding affinities for a variety of molecular vips.However,its moderate water solubility limits broader application.Here we report the synthesis of three CB[7]derivatives M1-M3 by modifying an average of 4.2,5.5,and 5.9 sulfonatopropoxy groups onto their"equator"carbons.Compared to CB[7],their water-solubility increased by at least 26.6-,23.6-,and 19.2-fold,respectively,while the maximum tolerated doses(MTD)of M1 and M2 improved by 2.5-and 2.3-fold.Phase solubility diagram studies demonstrate that M1 and M2 significantly enhance the water-solubility of eighteen poorly soluble drugs.In vivo experiments in rat complete Freund's arthritis reveal that M1 not only improves the anti-inflammatory efficacy of indomethacin by up to 52%,but also substantially reduces its side effect of gastric ulcer.展开更多
Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves a...Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.展开更多
In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share...In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share GPUs,which serve as coprocessors of central processing units(CPUs)and are activated only if tasks demand GPU computation.In a container environment,where resources can be shared among multiple users,GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU.However,unlike CPUs and memory,GPUs cannot logically multiplex their resources.Additionally,GPU memory does not support over-utilization:when it runs out,tasks will fail.Therefore,it is necessary to regulate the order of execution of concurrently running GPU tasks to avoid such task failures and to ensure equitable GPU sharing among users.In this paper,we propose a GPU task execution order management technique that controls GPU usage via time-based containers.The technique seeks to ensure equal GPU time among users in a container environment to prevent task failures.In the meantime,we use a deferred processing method to prevent GPU memory shortages when GPU tasks are executed simultaneously and to determine the execution order based on the GPU usage time.As the order of GPU tasks cannot be externally adjusted arbitrarily once the task commences,the GPU task is indirectly paused by pausing the container.In addition,as container pause/unpause status is based on the information about the available GPU memory capacity,overuse of GPU memory can be prevented at the source.As a result,the strategy can prevent task failure and the GPU tasks can be experimentally processed in appropriate order.展开更多
Mongolia is a landlocked country with limited infrastructure and high dependence on the Xingang Tianjin port in China for imports. This research examines the potential impacts of establishing a dry port in Zamyn-Uud, ...Mongolia is a landlocked country with limited infrastructure and high dependence on the Xingang Tianjin port in China for imports. This research examines the potential impacts of establishing a dry port in Zamyn-Uud, Mongolia, utilizing a system dynamics modeling approach via Vensim software. The study evaluates transportation time, costs, inflation, and logistics performance index improvements, revealing that the establishment of the dry port can reduce transportation costs and delays significantly while enhancing economic growth. The findings offer actionable insights for policymakers and stakeholders in addressing logistical inefficiencies and fostering sustainable development in landlocked regions.展开更多
Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'...Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.展开更多
In February 2024,192 lasers at the National Ignition Facility(NIF)in Livermore,CA,USA,began pouring 2.2 MJ of energy into a gold container smaller than the tip of a person’s little finger,heat-ing it to more than thr...In February 2024,192 lasers at the National Ignition Facility(NIF)in Livermore,CA,USA,began pouring 2.2 MJ of energy into a gold container smaller than the tip of a person’s little finger,heat-ing it to more than three million degrees Celsius(Fig.1)[1-4].Inside the container was a tiny fuel capsule containing tritium and deuterium that imploded at more than 400 km·s^(-1)causing atoms to combine and releasing 5.2 MJ of energy[1-4].展开更多
Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositori...Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061.展开更多
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.展开更多
The evolution mechanism of railway transportation network nodes driven by sea-rail intermodal transport(SRIT),a globally prevalent logistics method,has not been thoroughly investigated.From the perspective of SRIT,thi...The evolution mechanism of railway transportation network nodes driven by sea-rail intermodal transport(SRIT),a globally prevalent logistics method,has not been thoroughly investigated.From the perspective of SRIT,this study constructed a framework for understanding the evolution of railway container transport network nodes using Northeast China from 2013 to 2020 as a case study.It leverages proprietary data from 95306 Railway Freight E-commerce Platform.By employing the hybrid EWM-GA-TOPSIS model,complex network analysis,modified gravity model,and correlation and regression analyses,this study delves into the spatiotemporal patterns and dynamic transformations of railway container freight stations(RCFS).Finally,the long-term relationship between the RCFS and SRIT is explored.The results indicate that the spatial and temporal analysis of the RCFS in Northeast China from 2013 to 2020 revealed a clear polarisation trend,with the top-ranked stations mainly concentrated near ports and important transportation hubs.Additionally,the RCFS exhibited an expansionary trend;however,its development was uneven,and there was a significant increase in the number of new stations compared to abandoned stations,indicating an overall positive growth tendency.Moreover,the intensity of the SRIT at the RCFS in Northeast China notably increased.A significant positive linear relationship exists between SRIT and the freight capacity of all stations.A relatively pronounced correlation was observed for high-intensity stations,whereas a relatively weak correlation was observed for low-intensity stations.This study not only provides an effective framework for future research on RCFS within the context of SRIT but also serves as a scientific reference for promoting the implementation of the national strategy for multimodal transportation.展开更多
Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transport...Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.展开更多
Ghana’s Tema Port marked a historic milestone on 16 January 2024 with the arrival of Maersk Edirne,a 13,676-TEU container vessel-one of the largest of its kind globally-as part of Maersk’s newly launched Far East-We...Ghana’s Tema Port marked a historic milestone on 16 January 2024 with the arrival of Maersk Edirne,a 13,676-TEU container vessel-one of the largest of its kind globally-as part of Maersk’s newly launched Far East-West Africa express service.展开更多
Structural properties of the ship container logistics network of China(SCLNC)are studied in the light of recent investigations of complex networks.SCLNC is composed of a set of routes and ports located along the sea o...Structural properties of the ship container logistics network of China(SCLNC)are studied in the light of recent investigations of complex networks.SCLNC is composed of a set of routes and ports located along the sea or river.Network properties including the degree distribution,degree correlations,clustering,shortest path length,centrality and betweenness are studied in different definition of network topology.It is found that geographical constraint plays an important role in the network topology of SCLNC.We also study the traffic flow of SCLNC based on the weighted network representation,and demonstrate the weight distribution can be described by power law or exponential function depending on the assumed definition of network topology.Other features related to SCLNC are also investigated.展开更多
An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing...An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance.展开更多
In the context of building a country with a strong transportation network,railway container transportation(RCT)is an important means of reducing costs,increasing efficiency,and adjusting transportation structures.Thus...In the context of building a country with a strong transportation network,railway container transportation(RCT)is an important means of reducing costs,increasing efficiency,and adjusting transportation structures.Thus,its impact on regional economic development is important.Based on data from railway container-handling stations and spatial econometric models,this study discusses the differences in the development of RCT and their impact on regional economic development at different leves.This study has three main findings:first,there are significant regional differences in the development of the RCT.The intra-regional differences between the eastern and central regions of China(which do not include Hong Kong,Macao and Taiwan)are gradually narrowing,while the regional differences in the western region are widening.Meanwhile,the intra-regional differences in important economic zones such as Pearl River Delta Economic Zone(PRDEZ),Chengdu-Chongqing Economic Zone(CYEZ),Bohai Rim Economic Zone(BHEZ),and Yangtze River Delta Economic Zone(YRDEZ)are narrowing daily.Second,the development differences of RCT in regional level and important economic regions level show different trends.The unbalanced features of large regions are increasingly evident,whereas the differences in economic regions are decreasing.However,the problem of overlapping RCT remains prominent.Third,the transformation of RCT development mode and fierce competition among transportation modes cause RCT to have a restraining effect on the regional economy at three levels.Rational allocation of resources and other means must be used to guide the transformation from inhibition to promotion,and by formulating targeted policies that will promote the development of RCT,which will improve the transportation structure and help construct a country with a strong transportation system.展开更多
A water-soluble macrocycle that bears four carboxylate anions has been designed and prepared,which forms a rectangular cavity that can efficiently encapsulate discrete electron-deficient aromatic compounds,including b...A water-soluble macrocycle that bears four carboxylate anions has been designed and prepared,which forms a rectangular cavity that can efficiently encapsulate discrete electron-deficient aromatic compounds,including berberine and palmatine.This macrocycle is revealed to be highly biocompatible and able to inhibit the bitter taste of the two drugs.展开更多
This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constru...This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constructs a Sino-US container shipping network through voyage weighting and analyzes the essential structural characteristics to explore the network’s complex structural fea-tures.The network’s evolution is examined from three perspectives,namely,time,space,and event influence,aiming to comprehens-ively explore the network’s evolution mechanism.The results revealed that:1)the weighted Sino-US container shipping network exhib-its small-world and scale-free properties.Key hub ports in the United States include NEW YORK NY,SAVANNAH GA,LOS ANGELES CA,and OAKLAND CA,whereas SHANGHAI serving as the hub port in China.The geographical distribution of these hub ports is uneven.2)Concerning the evolution of the weighted Sino-US container shipping network,from a temporal perspective,the evolution of the regional structure of the entire Sino-US region and the Inland United States is in a stage of radiative expansion and de-velopment,with a need for further enhancement in competitiveness and development speed.The evolution of the regional structure of southern China and Europe is transitioning from the stage of radiative expansion and development to an advanced equilibrium stage.The shipping development in Northern China,the Western and Eastern United States,and Asia is undergoing significant changes but faces challenges of fierce competition and imbalances.From a spatial perspective,the rationality and effectiveness of the improved weighted Barrat-Barthelemy-Vespignani(BBV)model are confirmed through theoretical derivation.The applicability of the improved evolution model is verified by simulating the evolution of the weighted Sino-US container shipping network.From an event impact per-spective,the Corona Virus Disease 2019(COVID-19)pandemic has not fundamentally affected the spatial pattern of the weighted Sino-US container shipping network but has significantly impacted the network’s connectivity.The network lacks sufficient resilience and stability in emergency situations.3)Based on the analysis of the structural characteristics and evolution of the weighted Sino-US con-tainer shipping network,recommendations for network development are proposed from three aspects:emphasizing the development of hub ports,focusing on the balanced development of the network,and optimizing the layout of Chinese ports.展开更多
基金supported by the National Natural Science Foundation of China(61873030,62002019).
文摘In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected resource request spikes,the engine is limited to the current workflow load information for resource allocation,which lacks the agility and predictability of resource allocation,resulting in over and underprovisioning resources.This mechanism seriously hinders workflow execution efficiency and leads to high resource waste.To overcome these drawbacks,we propose an adaptive resource allocation scheme named adaptive resource allocation scheme(ARAS)for the Kubernetes-based workflow engines.Considering potential future workflow task requests within the current task pod’s lifecycle,the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios.The ARAS offers resource discovery,resource evaluation,and allocation functionalities and serves as a key component for our tailored workflow engine(KubeAdaptor).By integrating the ARAS into KubeAdaptor for workflow containerized execution,we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS.Compared with the baseline algorithm,experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows,time-saving of 26.4% to 79.86% in the average duration of individual workflow,and an increase of 1% to 16% in centrol processing unit(CPU)and memory resource usage rate.
文摘The containerized shipment of freight continues to grow rapidly. This development can be traced to a transformation of bulk and break-bulk service to containerization. Demand has been driven by opportunities to broaden logistical options as well as advantageous freight rates. Logisticians and policy makers are unsure how much more bulk traffic can be converted to containerization, but the trends are evident. Of particular interest is grain. Bulk grain handlers have successfully resisted the conversion of grain shipping to containerization, except on the North American-Asian traffic lanes and the Australian-Asian traffic lanes where growth has been significant. This paper reviews the theoretical case for grain containerization from a logistics perspective, followed by an examination of the current trends in the United States and Canada. Subsequently, the analysis considers the restrictions and resistance to the conversion of grain from bulk shipping to containerization.
基金financial support from the National Natural Science Foundation of China(Grant No.11572159).
文摘The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7.
基金partially supported by Asia Pacific University of Technology&Innovation(APU)Bukit Jalil,Kuala Lumpur,MalaysiaThe funding body had no role in the study design,data collection,analysis,interpretation,or writing of the manuscript.
文摘Kubernetes has become the dominant container orchestration platform,withwidespread adoption across industries.However,its default pod-to-pod communicationmechanism introduces security vulnerabilities,particularly IP spoofing attacks.Attackers can exploit this weakness to impersonate legitimate pods,enabling unauthorized access,lateral movement,and large-scale Distributed Denial of Service(DDoS)attacks.Existing security mechanisms such as network policies and intrusion detection systems introduce latency and performance overhead,making them less effective in dynamic Kubernetes environments.This research presents PodCA,an eBPF-based security framework designed to detect and prevent IP spoofing in real time while minimizing performance impact.PodCA integrates with Kubernetes’Container Network Interface(CNI)and uses eBPF to monitor and validate packet metadata at the kernel level.It maintains a container network mapping table that tracks pod IP assignments,validates packet legitimacy before forwarding,and ensures network integrity.If an attack is detected,PodCA automatically blocks spoofed packets and,in cases of repeated attempts,terminates compromised pods to prevent further exploitation.Experimental evaluation on an AWS Kubernetes cluster demonstrates that PodCA detects and prevents spoofed packets with 100%accuracy.Additionally,resource consumption analysis reveals minimal overhead,with a CPU increase of only 2–3%per node and memory usage rising by 40–60 MB.These results highlight the effectiveness of eBPF in securing Kubernetes environments with low overhead,making it a scalable and efficient security solution for containerized applications.
基金National Natural Science Foundation of China(Nos.21921003 and 22201293)the National Key R&D Program of China(No.2023YFC3503400)for financial support。
文摘The ongoing development of small molecule drugs underscores the urgent need for novel excipients to formulate poorly soluble drug candidates.Cucurbit[7]uril(CB[7])possesses high binding affinities for a variety of molecular vips.However,its moderate water solubility limits broader application.Here we report the synthesis of three CB[7]derivatives M1-M3 by modifying an average of 4.2,5.5,and 5.9 sulfonatopropoxy groups onto their"equator"carbons.Compared to CB[7],their water-solubility increased by at least 26.6-,23.6-,and 19.2-fold,respectively,while the maximum tolerated doses(MTD)of M1 and M2 improved by 2.5-and 2.3-fold.Phase solubility diagram studies demonstrate that M1 and M2 significantly enhance the water-solubility of eighteen poorly soluble drugs.In vivo experiments in rat complete Freund's arthritis reveal that M1 not only improves the anti-inflammatory efficacy of indomethacin by up to 52%,but also substantially reduces its side effect of gastric ulcer.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102480,52278543 and 51978660)Natural Science Foundation of Jiangsu Province(Grant No.BK20231489)。
文摘Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2023RIS-009).
文摘In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share GPUs,which serve as coprocessors of central processing units(CPUs)and are activated only if tasks demand GPU computation.In a container environment,where resources can be shared among multiple users,GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU.However,unlike CPUs and memory,GPUs cannot logically multiplex their resources.Additionally,GPU memory does not support over-utilization:when it runs out,tasks will fail.Therefore,it is necessary to regulate the order of execution of concurrently running GPU tasks to avoid such task failures and to ensure equitable GPU sharing among users.In this paper,we propose a GPU task execution order management technique that controls GPU usage via time-based containers.The technique seeks to ensure equal GPU time among users in a container environment to prevent task failures.In the meantime,we use a deferred processing method to prevent GPU memory shortages when GPU tasks are executed simultaneously and to determine the execution order based on the GPU usage time.As the order of GPU tasks cannot be externally adjusted arbitrarily once the task commences,the GPU task is indirectly paused by pausing the container.In addition,as container pause/unpause status is based on the information about the available GPU memory capacity,overuse of GPU memory can be prevented at the source.As a result,the strategy can prevent task failure and the GPU tasks can be experimentally processed in appropriate order.
文摘Mongolia is a landlocked country with limited infrastructure and high dependence on the Xingang Tianjin port in China for imports. This research examines the potential impacts of establishing a dry port in Zamyn-Uud, Mongolia, utilizing a system dynamics modeling approach via Vensim software. The study evaluates transportation time, costs, inflation, and logistics performance index improvements, revealing that the establishment of the dry port can reduce transportation costs and delays significantly while enhancing economic growth. The findings offer actionable insights for policymakers and stakeholders in addressing logistical inefficiencies and fostering sustainable development in landlocked regions.
基金funded by the European Commission H2020 Research and Innovation Programme through the HARNESSTOM innovation action(Grant No.101000716)Grant CIPROM/2021/020(project SOLECO)funded by Conselleria d’Innovació,Universitats,Ciència i Societat Digital(Generalitat Valenciana,Spain)Pietro Gramazio received a post-doctoral fellowship(Grant No.RYC2021-031999-I)funded by MCIN/AEI/10.13039/501100011033 and by“European Union NextGenerationEU/PRTR”。
文摘Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.
文摘In February 2024,192 lasers at the National Ignition Facility(NIF)in Livermore,CA,USA,began pouring 2.2 MJ of energy into a gold container smaller than the tip of a person’s little finger,heat-ing it to more than three million degrees Celsius(Fig.1)[1-4].Inside the container was a tiny fuel capsule containing tritium and deuterium that imploded at more than 400 km·s^(-1)causing atoms to combine and releasing 5.2 MJ of energy[1-4].
文摘Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061.
文摘Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
基金National Natural Science Foundation of ChinaNo.72174035+5 种基金The National Key Research and Development ProjectNo.2023YFB4302200111 Project of ChinaNo.B20082The Talent Planning in DalianNo.2022RG05。
文摘The evolution mechanism of railway transportation network nodes driven by sea-rail intermodal transport(SRIT),a globally prevalent logistics method,has not been thoroughly investigated.From the perspective of SRIT,this study constructed a framework for understanding the evolution of railway container transport network nodes using Northeast China from 2013 to 2020 as a case study.It leverages proprietary data from 95306 Railway Freight E-commerce Platform.By employing the hybrid EWM-GA-TOPSIS model,complex network analysis,modified gravity model,and correlation and regression analyses,this study delves into the spatiotemporal patterns and dynamic transformations of railway container freight stations(RCFS).Finally,the long-term relationship between the RCFS and SRIT is explored.The results indicate that the spatial and temporal analysis of the RCFS in Northeast China from 2013 to 2020 revealed a clear polarisation trend,with the top-ranked stations mainly concentrated near ports and important transportation hubs.Additionally,the RCFS exhibited an expansionary trend;however,its development was uneven,and there was a significant increase in the number of new stations compared to abandoned stations,indicating an overall positive growth tendency.Moreover,the intensity of the SRIT at the RCFS in Northeast China notably increased.A significant positive linear relationship exists between SRIT and the freight capacity of all stations.A relatively pronounced correlation was observed for high-intensity stations,whereas a relatively weak correlation was observed for low-intensity stations.This study not only provides an effective framework for future research on RCFS within the context of SRIT but also serves as a scientific reference for promoting the implementation of the national strategy for multimodal transportation.
基金supported by National Natural Science Foundation of China(No.62073212)Shanghai Science and Technology Commission(No.23ZR1426600).
文摘Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.
文摘Ghana’s Tema Port marked a historic milestone on 16 January 2024 with the arrival of Maersk Edirne,a 13,676-TEU container vessel-one of the largest of its kind globally-as part of Maersk’s newly launched Far East-West Africa express service.
基金supported by Youth Foundation for Research of the Waterborne Transportation Institute.
文摘Structural properties of the ship container logistics network of China(SCLNC)are studied in the light of recent investigations of complex networks.SCLNC is composed of a set of routes and ports located along the sea or river.Network properties including the degree distribution,degree correlations,clustering,shortest path length,centrality and betweenness are studied in different definition of network topology.It is found that geographical constraint plays an important role in the network topology of SCLNC.We also study the traffic flow of SCLNC based on the weighted network representation,and demonstrate the weight distribution can be described by power law or exponential function depending on the assumed definition of network topology.Other features related to SCLNC are also investigated.
基金supported by the National Natural Science Foundation of China (Grant No.11902157)Natural Science Foundation of Jiangsu Province (Grant No.BK20180417)the Scientific and Technological Innovation Project of Army Engineering Univeristy of PLA (Grant No.KYGYZXJK150025)。
文摘An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance.
基金Under the auspices of National Key Research and Development Program of China(No.2023YFB4302200)National Natural Science Foundation of China(No.71831002,72174053)+1 种基金Liaoning Province Xingliao Talent Plan(No.XLYC2008030)Talent Planning in Dalian(No.2022RG05)。
文摘In the context of building a country with a strong transportation network,railway container transportation(RCT)is an important means of reducing costs,increasing efficiency,and adjusting transportation structures.Thus,its impact on regional economic development is important.Based on data from railway container-handling stations and spatial econometric models,this study discusses the differences in the development of RCT and their impact on regional economic development at different leves.This study has three main findings:first,there are significant regional differences in the development of the RCT.The intra-regional differences between the eastern and central regions of China(which do not include Hong Kong,Macao and Taiwan)are gradually narrowing,while the regional differences in the western region are widening.Meanwhile,the intra-regional differences in important economic zones such as Pearl River Delta Economic Zone(PRDEZ),Chengdu-Chongqing Economic Zone(CYEZ),Bohai Rim Economic Zone(BHEZ),and Yangtze River Delta Economic Zone(YRDEZ)are narrowing daily.Second,the development differences of RCT in regional level and important economic regions level show different trends.The unbalanced features of large regions are increasingly evident,whereas the differences in economic regions are decreasing.However,the problem of overlapping RCT remains prominent.Third,the transformation of RCT development mode and fierce competition among transportation modes cause RCT to have a restraining effect on the regional economy at three levels.Rational allocation of resources and other means must be used to guide the transformation from inhibition to promotion,and by formulating targeted policies that will promote the development of RCT,which will improve the transportation structure and help construct a country with a strong transportation system.
基金the National Natural Science Foundation of China(Nos.22271059,21921003,21890730 and 21890732)for financial support.
文摘A water-soluble macrocycle that bears four carboxylate anions has been designed and prepared,which forms a rectangular cavity that can efficiently encapsulate discrete electron-deficient aromatic compounds,including berberine and palmatine.This macrocycle is revealed to be highly biocompatible and able to inhibit the bitter taste of the two drugs.
基金Under the auspices of National Natural Science Foundation of China(No.41201473,41371975)。
文摘This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constructs a Sino-US container shipping network through voyage weighting and analyzes the essential structural characteristics to explore the network’s complex structural fea-tures.The network’s evolution is examined from three perspectives,namely,time,space,and event influence,aiming to comprehens-ively explore the network’s evolution mechanism.The results revealed that:1)the weighted Sino-US container shipping network exhib-its small-world and scale-free properties.Key hub ports in the United States include NEW YORK NY,SAVANNAH GA,LOS ANGELES CA,and OAKLAND CA,whereas SHANGHAI serving as the hub port in China.The geographical distribution of these hub ports is uneven.2)Concerning the evolution of the weighted Sino-US container shipping network,from a temporal perspective,the evolution of the regional structure of the entire Sino-US region and the Inland United States is in a stage of radiative expansion and de-velopment,with a need for further enhancement in competitiveness and development speed.The evolution of the regional structure of southern China and Europe is transitioning from the stage of radiative expansion and development to an advanced equilibrium stage.The shipping development in Northern China,the Western and Eastern United States,and Asia is undergoing significant changes but faces challenges of fierce competition and imbalances.From a spatial perspective,the rationality and effectiveness of the improved weighted Barrat-Barthelemy-Vespignani(BBV)model are confirmed through theoretical derivation.The applicability of the improved evolution model is verified by simulating the evolution of the weighted Sino-US container shipping network.From an event impact per-spective,the Corona Virus Disease 2019(COVID-19)pandemic has not fundamentally affected the spatial pattern of the weighted Sino-US container shipping network but has significantly impacted the network’s connectivity.The network lacks sufficient resilience and stability in emergency situations.3)Based on the analysis of the structural characteristics and evolution of the weighted Sino-US con-tainer shipping network,recommendations for network development are proposed from three aspects:emphasizing the development of hub ports,focusing on the balanced development of the network,and optimizing the layout of Chinese ports.