A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming s...Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..展开更多
An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and...An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.展开更多
The formulation of boundary element method for handling contact problems with friction and the technique for high speed contact analysis are presented. This formulation is based on the idea of modifying the length of...The formulation of boundary element method for handling contact problems with friction and the technique for high speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high speed analysis are verified according to the results of conventional method and analysis method.展开更多
Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed...Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.展开更多
An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary ...An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.展开更多
Each surface of roughness has different shape of asperity which is modeled with various shapes of analytical models. In this paper, the differences among various models of shape of asperity investigate using the Finit...Each surface of roughness has different shape of asperity which is modeled with various shapes of analytical models. In this paper, the differences among various models of shape of asperity investigate using the Finite Element Method (FEM) and various analytical models. The contact stresses in rough surfaces are calculated analytically using various asperity shape models. Finite element analysis is also carried out assuming three types of material properties namely, the linear, the elastic-perfect plastic and the elastic-nonlinear hardening. The analytical results are compared with the results obtained by the finite element method. The results illustrate for using a deterministic approach which the numerical models are suitable. In hertz model, the result of force is very big in interface of causing deformation plastic, while Model Zhao has almost same result with FEM nonlinear property model. It is observed that the results obtained from Zhao’s model are generally in a better agreement with the results obtained from various finite element models especially in elastic-plastic and plastic zones, hence it may be concluded that Zhao’s model can be used for analyzing the rough surfaces in contact mechanics.展开更多
The discrete element method(DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particula...The discrete element method(DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil(e.g. cavity expansion),DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has widespread applications in geotechnical engineering, particularly to the problems concerning in situ testing, pile installation and so forth. In addition, the behaviour of geomaterials in a macro-level is utterly determined by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response.Hence, in this study, a series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model,and Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile installation(i.e. cavity expansion), a minimum distance of11 a(a is the cavity radius) is recommend for practicing engineers to avoid the potential damages to the existing piles and adjacent structures.展开更多
Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification e...Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.展开更多
The adaptive element techniques of contact problem are studied by means of penalty method, and the error estimators are discussed. Based on error estimators, algorithm of the adaptive element techniques is developed, ...The adaptive element techniques of contact problem are studied by means of penalty method, and the error estimators are discussed. Based on error estimators, algorithm of the adaptive element techniques is developed, then the Gauss - Newton iterations are used which allow the nonlinear problem to be transformed into a sequence of linear sub- problems then easily solved. In addition, the algorithm can be applied into the simulation of de -bonding of fiber - reinforced composites.展开更多
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and...This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.展开更多
The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mis...The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.展开更多
The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for th...The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.展开更多
Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discont...Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method.展开更多
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
文摘Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..
基金This work was financially supported by the National Nature Science Foundation of China(No.19902001), the National Excellent Yout
文摘An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.
文摘The formulation of boundary element method for handling contact problems with friction and the technique for high speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high speed analysis are verified according to the results of conventional method and analysis method.
基金The Project Supported by National Natural Science Foundation of China
文摘Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.
文摘An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.
文摘Each surface of roughness has different shape of asperity which is modeled with various shapes of analytical models. In this paper, the differences among various models of shape of asperity investigate using the Finite Element Method (FEM) and various analytical models. The contact stresses in rough surfaces are calculated analytically using various asperity shape models. Finite element analysis is also carried out assuming three types of material properties namely, the linear, the elastic-perfect plastic and the elastic-nonlinear hardening. The analytical results are compared with the results obtained by the finite element method. The results illustrate for using a deterministic approach which the numerical models are suitable. In hertz model, the result of force is very big in interface of causing deformation plastic, while Model Zhao has almost same result with FEM nonlinear property model. It is observed that the results obtained from Zhao’s model are generally in a better agreement with the results obtained from various finite element models especially in elastic-plastic and plastic zones, hence it may be concluded that Zhao’s model can be used for analyzing the rough surfaces in contact mechanics.
文摘The discrete element method(DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil(e.g. cavity expansion),DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has widespread applications in geotechnical engineering, particularly to the problems concerning in situ testing, pile installation and so forth. In addition, the behaviour of geomaterials in a macro-level is utterly determined by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response.Hence, in this study, a series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model,and Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile installation(i.e. cavity expansion), a minimum distance of11 a(a is the cavity radius) is recommend for practicing engineers to avoid the potential damages to the existing piles and adjacent structures.
文摘Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.
文摘The adaptive element techniques of contact problem are studied by means of penalty method, and the error estimators are discussed. Based on error estimators, algorithm of the adaptive element techniques is developed, then the Gauss - Newton iterations are used which allow the nonlinear problem to be transformed into a sequence of linear sub- problems then easily solved. In addition, the algorithm can be applied into the simulation of de -bonding of fiber - reinforced composites.
基金supported by the National Nature Science Foundation of China (Grant No 90510017)
文摘This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.
文摘The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.
基金theNationalKeyBasicResearchSpecialFoundation (G1 9990 3 2 80 5 ) the FoundationforUniversityKeyTeacherbytheMinistryofEducationo
文摘The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.
文摘Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method.