To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development...To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.展开更多
Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review cover...Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.展开更多
To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission leve...To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NO_(x).The exhaust smoke level and excessive emission situation of different machinery types were identified,and their NO_(x)emission levels were monitored according to the free acceleration method.We investigated the correlation of NO_(x)and smoke emission,and proposed suggestions for controlling pollution discharge from construction machinery in the future.The results show that the exhaust smoke level was 0–2.62 m^(−1),followed a log-normal distribution(μ=-1.73,δ=1.09,R^(2)=0.99),with a 5.64%exceedance rate.Differenceswere observed amongmachinery types,with low-power engine forklifts showing higher smoke levels.The NO_(x)emission range was 71–1516 ppm,followed a normal distribution(μ=565.54,δ=309.51,R^(2)=0.83).Differences among machinery types were relatively small.Engine rated net power had the most significant impact on NO_(x)emissions.Thus,NO_(x)emissions from construction machinery need further attention.Furthermore,we found a weak negative correlation(p<0.05)between the emission level of smoke and NO_(x),that is the synergic emission reduction effect is poor,emphasizing the need for NO_(x)emission limits.In the future,the oversight in Beijing should prioritize phasing out ChinaⅠand ChinaⅡmachinery,and monitor emissions from highpower engine ChinaⅢmachinery.展开更多
The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination ...The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,off...With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.展开更多
The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have bec...The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.展开更多
With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an import...With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an important criterion for measuring the quality of business environment.This article is intended to explore the current status of intellectual property system construction in China,the challenges,and its relationship with the business environment,to propose the corresponding countermeasures and suggestions.The study finds that the legal system of intellectual property in China is gradually improving,and judicial and administrative protection are continuously strengthened.However,the challenges still remain such as frequent infringements,rights hard to protect and insufficient international cooperation.These issues not only affect the legitimate rights and interests of innovation entities,but also for the market fairness and the level of the business environment.Therefore,this article proposes that strengthening the perfection of the intellectual property legal system,enhancing intellectual property services and support capabilities,strengthening international cooperation and exchanges,and accelerating the cultivation of composite talents.It aims to provide theoretical references for the construction of intellectual property system and the optimization of the business environment,promote the high-quality development of economy and enhance the global competitiveness of the country.展开更多
Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of mult...Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of multi-sensor fusion localization algorithms for smart plastering robots,and an analysis of path planning and navigation functions for smart plastering robots.It is hoped that through this analysis,a reference is provided for the path planning and navigation design of such robots to meet their practical application needs.展开更多
1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are cha...1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.展开更多
Construction work is an important component of social development,and its safety management is crucial for the protection of employees’lives,the efficient development of enterprises,and the social harmony and stabili...Construction work is an important component of social development,and its safety management is crucial for the protection of employees’lives,the efficient development of enterprises,and the social harmony and stability.Therefore,this paper explores the risk identification,risk estimation,risk evaluation,and control strategies of construction sites.It analyzes the research progress,current issues that need optimization,and future development directions,aiming to provide insights for the development of risk evaluation in construction sites.展开更多
Professional and trade skills are required for handling the construction related projects;Construction industries of the present day however lack useful information concerning different practices,patterns and trends i...Professional and trade skills are required for handling the construction related projects;Construction industries of the present day however lack useful information concerning different practices,patterns and trends involved in risk management.Considering this,the present study focuses on the aforementioned variables of risk management by quantitative analysis specifically in the domain of construction industry.This study has used IBM’s SPSS(Statistical Package for Social Sciences)version 25.0 to analyze the results.This study is an initiative to assess the impact of risk management in the construction sector of Jordan.It will assist the construction sector for exploring the limitations with respect to integrate effective risk management.A sense of competition will be developed through a comparison of risk factors of construction projects among the project stakeholders such as contractors should enhance their risk management practices.展开更多
In an environment where demand for housing is growing and the supply from public authorities is virtually non-existent,several mechanisms for housing production are emerging in the formal,semi-informal and informal co...In an environment where demand for housing is growing and the supply from public authorities is virtually non-existent,several mechanisms for housing production are emerging in the formal,semi-informal and informal construction sectors.The project owner wonders how much it costs to construct a building to an acceptable standard.Cost forecasting in general faces a number of difficulties,including a lack of available information during the preliminary phase of the project.As such,estimation becomes a crucial task involving great responsibility,which can lead to either more convincing results or chaotic situations.This study proposes a quick and effective method for estimating the cost of a single-storey F4 residential building.The modelling is done using multiple linear regression based on a statistical approach applied to twenty(20)projects that have already been completed.The project data are collected from design offices in the city of Brazzaville.The method expresses the cost of an F4 construction by certain project tasks,representing five(5)variables,three(3)of which are related to structural work and two(2)to finishing work,which are easy to determine.This approach,known as MECSO(Cost Estimation Model by Sub-structure),gives good results in all statistical tests carried out with reasonable confidence intervals.This method is very practical for engineering professionals working on the evaluation and control of construction costs.展开更多
The increasing cost of infrastructure development risks stifling national investment plans.Many projects in Uganda have suffered because of the frequency and magnitude of claims made by parties involved especially the...The increasing cost of infrastructure development risks stifling national investment plans.Many projects in Uganda have suffered because of the frequency and magnitude of claims made by parties involved especially the contractors.As a result,the construction industry is plagued with claims which quite often lead to adversarial relationships.The major grounds for claims were identified through studying the contract documents where claims had been made.Increase in scope;change orders;errors in contract documents;inclement weather;inflation;delay in possessing the site;and change in the tax policy were the most prevalent grounds for making claims.Problems identified in claiming process include delays in getting approval;information on claims not reliable;hostility from the parties involved;pricing of claims;delays in effecting payment when approved;and overzealous contract interpretation leading to misunderstanding and delays Using a survey on project managers for 64 contractors and their corresponding clients or their representatives,the major ways in which it can be reduced were identified as being thoroughness during the design phase;providing for inflation;proper planning of works;using prequalified contractors;and proper documentation of records.Clients have a big role to play in reducing claims.展开更多
When carrying out highway traffic engineering projects,it is essential to focus on construction organization design as the core,accurately grasp the key points of construction organization design,and adopt appropriate...When carrying out highway traffic engineering projects,it is essential to focus on construction organization design as the core,accurately grasp the key points of construction organization design,and adopt appropriate construction organization methods to ensure the smooth completion of the project.In the process of implementing project construction management,it is necessary to focus on strengthening the management of construction quality,construction progress,construction costs,and construction safety,and effectively enhance the competitive strength of construction enterprises.This article explores the construction organization of highway traffic engineering projects and proposes specific construction management approaches,hoping to assist in the smooth completion of highway traffic engineering projects with guaranteed quality and quantity.展开更多
In the process of cultural and tourism project construction,intelligent construction technology has gradually shown strong advantages.The effective application of this technology not only greatly improves the construc...In the process of cultural and tourism project construction,intelligent construction technology has gradually shown strong advantages.The effective application of this technology not only greatly improves the construction efficiency and quality of cultural and tourism projects,but also effectively controls construction costs,laying a solid foundation for the green,low-carbon,and sustainable development of the cultural and tourism industry.The article analyzes the current situation of cultural and tourism project construction,proposes the advantages of intelligent construction and its application in the construction mode of cultural and tourism projects,aiming to provide reliable guidance for the sustainable development of cultural and tourism projects.展开更多
The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers o...The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers obtained by grinding and soaking in water and then drying were used as a stabilizer in the manufacture of these mud bricks from the sample of two sites Dounkiwal (DK) (in Mamou and the sample from the urban commune of Kouroussa). To do this, certain methods and means of identification were carried out, namely: geotechnical, mineralogical and chemical analyses. Sample DK from Mamou has a silty-clay geotechnical characteristic with a plasticity index Ip of 12.75%. However, mineralogical and chemical studies showed that sample Dounkiwal (DK) (Mamou) contains a high proportion of silica and iron oxides (79.63%) and Fe2O3 (11.85%), associated with other alkaline earth oxides and ions: CaO;MgO;SO32−;Cl−, i.e. 3.96%;0.96%;0.28% and 0.039% respectively. Its loss on ignition (LOI) and insoluble residues are 15.40% and 56.36%. The evaluation of the number of huts in Upper and Middle Guinea showed that the populations of these areas have been using mud bricks for several decades in the construction of dwellings. The average value found for the compressive strength of these bricks (from samples I, II and III from Kouroussa) is 0.16 MPa. This value is appreciable in the construction of mud houses.展开更多
The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic ...The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic diversity,with relatively less research on functional and phylogenetic diversity.In this study,we examined the phylogenetic and functional diversity and underlying influencing factors of bird communities in 37 urban parks in Nanjing,China.We conducted a systematic survey of bird communities in Nanjing urban parks and selected six park characteristics that are generally considered to affect bird diversity.Model selection based on corrected Akaike Information Criterion(AICc)and model averaging showed that park area,habitat diversity and building index(a proxy for the degree of urbanization)were significant factors affecting avian phylogenetic and functional diversity in Nanjing urban parks.Specifically,habitat diversity and park area were positively correlated with bird diversity,while the building index was negatively correlated with bird diversity.Moreover,the phylogenetic and functional structures of urban bird communities exhibited a clustered pattern,indicating that environmental filtering might play a role in shaping community composition.In addition,building index had certain impact on the construction of bird phylogenetic communities in urban parks.Our results suggest that expanding park areas,increasing habitat diversity and reducing building indexes may be effective measures to increase the avian phylogenetic and functional diversity in our system.展开更多
The basement was located at the bottom of the building,which not only affected the quality of the whole construction project but also had special requirements for construction technology and construction requirements....The basement was located at the bottom of the building,which not only affected the quality of the whole construction project but also had special requirements for construction technology and construction requirements.In modern times,with the increasing height of the building,the pressure on the ground has grown,and the demands for basements in construction projects have also steadily increased.With the development of modern technology,various construction techniques for basements emerged within the construction industry.Thus,this paper analyses the type of basement floor construction technologies,highlighting the application of these methods,and points out critical issues to consider.By examining frequent basement leakage problems,the paper proposed several measures to improve the quality if basement construction,aiming to better protect the service life of the building and further improve overall quality,and offering valuable insights for future projects.展开更多
Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical ...Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.展开更多
文摘To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.
基金supported by Ministry of Education of Singapore,under Academic Research Fund Tier 1(Grant Number RG143/23).
文摘Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.
基金supported by the Energy Foundation(No.G-2203-33693).
文摘To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NO_(x).The exhaust smoke level and excessive emission situation of different machinery types were identified,and their NO_(x)emission levels were monitored according to the free acceleration method.We investigated the correlation of NO_(x)and smoke emission,and proposed suggestions for controlling pollution discharge from construction machinery in the future.The results show that the exhaust smoke level was 0–2.62 m^(−1),followed a log-normal distribution(μ=-1.73,δ=1.09,R^(2)=0.99),with a 5.64%exceedance rate.Differenceswere observed amongmachinery types,with low-power engine forklifts showing higher smoke levels.The NO_(x)emission range was 71–1516 ppm,followed a normal distribution(μ=565.54,δ=309.51,R^(2)=0.83).Differences among machinery types were relatively small.Engine rated net power had the most significant impact on NO_(x)emissions.Thus,NO_(x)emissions from construction machinery need further attention.Furthermore,we found a weak negative correlation(p<0.05)between the emission level of smoke and NO_(x),that is the synergic emission reduction effect is poor,emphasizing the need for NO_(x)emission limits.In the future,the oversight in Beijing should prioritize phasing out ChinaⅠand ChinaⅡmachinery,and monitor emissions from highpower engine ChinaⅢmachinery.
基金sponsored by the National Key Research and Development Program of China(2021YFB3802000 and 2021YFB3802004)the National Natural Science Foundation of China(52172016).
文摘The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
基金financially supported by National Key R&D Program of China(2021YFB3500702)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04).
文摘With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.
基金National Key R&D Program of China(Nos.2023YFC3806900,2022YFE0141400)。
文摘The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.
基金Guizhou Provincial University Humanities and Social Sciences Research Project in 2024"Enhancing the Development of New Productive Forces through University Technological Innovation and Intellectual Property Management"(2024RW256)Guizhou University of Commerce Research Project in 2022"Study on the Ideas and Pathways to Drive Agricultural Powerhouse through Digital Economy"(2022XJZX315)。
文摘With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an important criterion for measuring the quality of business environment.This article is intended to explore the current status of intellectual property system construction in China,the challenges,and its relationship with the business environment,to propose the corresponding countermeasures and suggestions.The study finds that the legal system of intellectual property in China is gradually improving,and judicial and administrative protection are continuously strengthened.However,the challenges still remain such as frequent infringements,rights hard to protect and insufficient international cooperation.These issues not only affect the legitimate rights and interests of innovation entities,but also for the market fairness and the level of the business environment.Therefore,this article proposes that strengthening the perfection of the intellectual property legal system,enhancing intellectual property services and support capabilities,strengthening international cooperation and exchanges,and accelerating the cultivation of composite talents.It aims to provide theoretical references for the construction of intellectual property system and the optimization of the business environment,promote the high-quality development of economy and enhance the global competitiveness of the country.
基金Science and Technology Research Project of Chongqing Education Commission(Project No.:KJQN202401902)Chongqing Construction Science and Technology Plan Project(Project No.:Chinese Society For Urban Studies,2024:3-24)+1 种基金cientific Research Fund Project of Chongqing Institute of Engineering(Project No.:2022gcky01)College Student Innovation and Entrepreneurship Training Program Project of Chongqing Institute of Engineering(Project No.:CXCY2024018)。
文摘Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of multi-sensor fusion localization algorithms for smart plastering robots,and an analysis of path planning and navigation functions for smart plastering robots.It is hoped that through this analysis,a reference is provided for the path planning and navigation design of such robots to meet their practical application needs.
基金supported by the National Nature Science Foundation of China(No.12172211)the National Key Research and Development Program of China(No.2019YFC1509800)。
文摘1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.
文摘Construction work is an important component of social development,and its safety management is crucial for the protection of employees’lives,the efficient development of enterprises,and the social harmony and stability.Therefore,this paper explores the risk identification,risk estimation,risk evaluation,and control strategies of construction sites.It analyzes the research progress,current issues that need optimization,and future development directions,aiming to provide insights for the development of risk evaluation in construction sites.
文摘Professional and trade skills are required for handling the construction related projects;Construction industries of the present day however lack useful information concerning different practices,patterns and trends involved in risk management.Considering this,the present study focuses on the aforementioned variables of risk management by quantitative analysis specifically in the domain of construction industry.This study has used IBM’s SPSS(Statistical Package for Social Sciences)version 25.0 to analyze the results.This study is an initiative to assess the impact of risk management in the construction sector of Jordan.It will assist the construction sector for exploring the limitations with respect to integrate effective risk management.A sense of competition will be developed through a comparison of risk factors of construction projects among the project stakeholders such as contractors should enhance their risk management practices.
文摘In an environment where demand for housing is growing and the supply from public authorities is virtually non-existent,several mechanisms for housing production are emerging in the formal,semi-informal and informal construction sectors.The project owner wonders how much it costs to construct a building to an acceptable standard.Cost forecasting in general faces a number of difficulties,including a lack of available information during the preliminary phase of the project.As such,estimation becomes a crucial task involving great responsibility,which can lead to either more convincing results or chaotic situations.This study proposes a quick and effective method for estimating the cost of a single-storey F4 residential building.The modelling is done using multiple linear regression based on a statistical approach applied to twenty(20)projects that have already been completed.The project data are collected from design offices in the city of Brazzaville.The method expresses the cost of an F4 construction by certain project tasks,representing five(5)variables,three(3)of which are related to structural work and two(2)to finishing work,which are easy to determine.This approach,known as MECSO(Cost Estimation Model by Sub-structure),gives good results in all statistical tests carried out with reasonable confidence intervals.This method is very practical for engineering professionals working on the evaluation and control of construction costs.
文摘The increasing cost of infrastructure development risks stifling national investment plans.Many projects in Uganda have suffered because of the frequency and magnitude of claims made by parties involved especially the contractors.As a result,the construction industry is plagued with claims which quite often lead to adversarial relationships.The major grounds for claims were identified through studying the contract documents where claims had been made.Increase in scope;change orders;errors in contract documents;inclement weather;inflation;delay in possessing the site;and change in the tax policy were the most prevalent grounds for making claims.Problems identified in claiming process include delays in getting approval;information on claims not reliable;hostility from the parties involved;pricing of claims;delays in effecting payment when approved;and overzealous contract interpretation leading to misunderstanding and delays Using a survey on project managers for 64 contractors and their corresponding clients or their representatives,the major ways in which it can be reduced were identified as being thoroughness during the design phase;providing for inflation;proper planning of works;using prequalified contractors;and proper documentation of records.Clients have a big role to play in reducing claims.
文摘When carrying out highway traffic engineering projects,it is essential to focus on construction organization design as the core,accurately grasp the key points of construction organization design,and adopt appropriate construction organization methods to ensure the smooth completion of the project.In the process of implementing project construction management,it is necessary to focus on strengthening the management of construction quality,construction progress,construction costs,and construction safety,and effectively enhance the competitive strength of construction enterprises.This article explores the construction organization of highway traffic engineering projects and proposes specific construction management approaches,hoping to assist in the smooth completion of highway traffic engineering projects with guaranteed quality and quantity.
文摘In the process of cultural and tourism project construction,intelligent construction technology has gradually shown strong advantages.The effective application of this technology not only greatly improves the construction efficiency and quality of cultural and tourism projects,but also effectively controls construction costs,laying a solid foundation for the green,low-carbon,and sustainable development of the cultural and tourism industry.The article analyzes the current situation of cultural and tourism project construction,proposes the advantages of intelligent construction and its application in the construction mode of cultural and tourism projects,aiming to provide reliable guidance for the sustainable development of cultural and tourism projects.
文摘The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers obtained by grinding and soaking in water and then drying were used as a stabilizer in the manufacture of these mud bricks from the sample of two sites Dounkiwal (DK) (in Mamou and the sample from the urban commune of Kouroussa). To do this, certain methods and means of identification were carried out, namely: geotechnical, mineralogical and chemical analyses. Sample DK from Mamou has a silty-clay geotechnical characteristic with a plasticity index Ip of 12.75%. However, mineralogical and chemical studies showed that sample Dounkiwal (DK) (Mamou) contains a high proportion of silica and iron oxides (79.63%) and Fe2O3 (11.85%), associated with other alkaline earth oxides and ions: CaO;MgO;SO32−;Cl−, i.e. 3.96%;0.96%;0.28% and 0.039% respectively. Its loss on ignition (LOI) and insoluble residues are 15.40% and 56.36%. The evaluation of the number of huts in Upper and Middle Guinea showed that the populations of these areas have been using mud bricks for several decades in the construction of dwellings. The average value found for the compressive strength of these bricks (from samples I, II and III from Kouroussa) is 0.16 MPa. This value is appreciable in the construction of mud houses.
基金supported by the National Natural Science Foundation of China(No.32271734)。
文摘The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic diversity,with relatively less research on functional and phylogenetic diversity.In this study,we examined the phylogenetic and functional diversity and underlying influencing factors of bird communities in 37 urban parks in Nanjing,China.We conducted a systematic survey of bird communities in Nanjing urban parks and selected six park characteristics that are generally considered to affect bird diversity.Model selection based on corrected Akaike Information Criterion(AICc)and model averaging showed that park area,habitat diversity and building index(a proxy for the degree of urbanization)were significant factors affecting avian phylogenetic and functional diversity in Nanjing urban parks.Specifically,habitat diversity and park area were positively correlated with bird diversity,while the building index was negatively correlated with bird diversity.Moreover,the phylogenetic and functional structures of urban bird communities exhibited a clustered pattern,indicating that environmental filtering might play a role in shaping community composition.In addition,building index had certain impact on the construction of bird phylogenetic communities in urban parks.Our results suggest that expanding park areas,increasing habitat diversity and reducing building indexes may be effective measures to increase the avian phylogenetic and functional diversity in our system.
文摘The basement was located at the bottom of the building,which not only affected the quality of the whole construction project but also had special requirements for construction technology and construction requirements.In modern times,with the increasing height of the building,the pressure on the ground has grown,and the demands for basements in construction projects have also steadily increased.With the development of modern technology,various construction techniques for basements emerged within the construction industry.Thus,this paper analyses the type of basement floor construction technologies,highlighting the application of these methods,and points out critical issues to consider.By examining frequent basement leakage problems,the paper proposed several measures to improve the quality if basement construction,aiming to better protect the service life of the building and further improve overall quality,and offering valuable insights for future projects.
文摘Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.