The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have bec...The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.展开更多
Extreme environments are unstructured and change rapidly,making human exploration in unfamiliar areas difficult.Construction robotics can help reduce risks to human safety and property in these environments by integra...Extreme environments are unstructured and change rapidly,making human exploration in unfamiliar areas difficult.Construction robotics can help reduce risks to human safety and property in these environments by integrating digital technology and artificial intelligence.This technology has the potential to significantly improve the quality and efficiency of construction,making it a key area for future research.Extreme environments include hazardous work sites,polluted areas,and harsh natural conditions.Our review of construction robotics in these settings highlights several knowledge gaps.We focused on four main areas:mechanism design,perception,planning,and control.Our analysis reveals challenges in practical applications,such as creating adaptable mechanisms,accurately perceiving changing environments,planning for unstructured sites,and optimizing control models.Future research should explore:biomimetic designs inspired by nature,multimodal data fusion for perception,adaptive planning strategies,and hybrid control models that combine data-driven and mechanism-based approaches.展开更多
The traditional automated guided vehicle(AGV) on goods delivery faces the challenges when task space expands beyond 2 D plans. 3 D environments such as uneven terrain, ramps, and staircase are typical in construction ...The traditional automated guided vehicle(AGV) on goods delivery faces the challenges when task space expands beyond 2 D plans. 3 D environments such as uneven terrain, ramps, and staircase are typical in construction site. Thus, the key to introducing this technology into construction industry is to improve AGV’s stability and autonomous navigation ability in more complex three-dimensional environments. In this paper, mobileman, a novel tracked autonomous guide vehicle, is introduced. Compared with other construction robots, mobileman maximizes its load capacity on the basis of assuring accessibility. Furthermore, its modular designs and self-balancing platform enable it to cope with more complex challenging scenarios, such as staircase with 35-degree sloped staircase, while another modular design featured automated loading and unloading functionality. The mobile base specifications were presented in section two, and modular designs and exploration of the navigation system on construction site were illustrated in the rest of sections.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
Building construction has developed from the use of primitive tools to that of machinery,with a tendency toward automation.Automation of processes and robotics can improve efficiency,accuracy and safety in constructio...Building construction has developed from the use of primitive tools to that of machinery,with a tendency toward automation.Automation of processes and robotics can improve efficiency,accuracy and safety in construction.On the other hand,structural prefabrication for construction is increasingly being adopted worldwide to enhance productivity and to alleviate the environmental impact of conventional construction processes.The combination and application of automation and prefabrication technologies may therefore introduce new developments to the construction industry.This paper provides a comprehensive review of the use of automation technology for structural prefabrication and construction,including recent developments,challenges and future trends.Five stages following the sequence of construction are proposed:design,construction management,robotic manufacturing,autonomous transportation and automatic structural assembly.The paper concludes that the widespread use of automation technology is preferable to structural prefabrication for construction,and that the design for robotic construction introduced through connection innovations may be beneficial as a means of avoiding complex operations and thus improving the efficiency of robotic assembly processes.展开更多
The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to...The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to accomplish a precise task,the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment.A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove.Namely,the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston,and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder.Moreover,the variable gain improved algorithm is developed to overcome the defect for grasping soft object.Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.展开更多
Deep reinforcement learning(DRL)remains underexplored within architectural robotics,particularly in relation to self-learning of architectural design principles and designaware robotic fabrication.To address this gap,...Deep reinforcement learning(DRL)remains underexplored within architectural robotics,particularly in relation to self-learning of architectural design principles and designaware robotic fabrication.To address this gap,we applied established DRL methods to enable robot arms to autonomously learn design rules in a pilot block wall assembly-design scenario.Recognizing the complexity inherent in such learning tasks,the problem was strategically decomposed into two sub-tasks:(i)target reaching(T1),modeled within a continuous action space,and(ii)sequential planning(T2),formulated within a discrete action space.For T1,we evaluated major DRL algorithms―Proximal Policy Optimization(PPO),Advantage Actor-Critic(A2C),Deep Deterministic Policy Gradient,Twin Delayed Deep Deterministic Policy Gradient,and Soft Actor-Critic(SAC),and PPO,A2C,and Double Deep Q-Network(DDQN)were tested for T2.Performance was assessed based on training efficacy,reliability,and two novel metrics:degree index and variation index.Our results revealed that SAC was the best for T1,whereas DDQN excelled in T2.Notably,DDQN exhibited strong learning adaptability,yielding diverse final layouts in response to varying initial conditions.展开更多
Engineering inspection and maintenance technologies play an important role in safety,operation,maintenance and management of buildings.In project construction control,supervision of engineering quality is a difficult ...Engineering inspection and maintenance technologies play an important role in safety,operation,maintenance and management of buildings.In project construction control,supervision of engineering quality is a difficult task.To address such inspection and maintenance issues,this study presents a computer-vision-guided semi-autonomous robotic system for identification and repair of concrete cracks,and humans can make repair plans for this system.Concrete cracks are characterized through computer vision,and a crack feature database is established.Furthermore,a trajectory generation and coordinate transformation method is designed to determine the robotic execution coordinates.In addition,a knowledge base repair method is examined to make appropriate decisions on repair technology for concrete cracks,and a robotic arm is designed for crack repair.Finally,simulations and experiments are conducted,proving the feasibility of the repair method proposed.The result of this study can potentially improve the performance of on-site automatic concrete crack repair,while addressing such issues as high accident rate,low efficiency,and big loss of skilled workers.展开更多
基金National Key R&D Program of China(Nos.2023YFC3806900,2022YFE0141400)。
文摘The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.
基金supported in the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500301 and 2023YFB3711300)+1 种基金the National Natural Science Foundation of China(72171092 and 71821001)the Natural Science Fund for Distinguished Young Scholars of Hubei Province(2021CFA091).
文摘Extreme environments are unstructured and change rapidly,making human exploration in unfamiliar areas difficult.Construction robotics can help reduce risks to human safety and property in these environments by integrating digital technology and artificial intelligence.This technology has the potential to significantly improve the quality and efficiency of construction,making it a key area for future research.Extreme environments include hazardous work sites,polluted areas,and harsh natural conditions.Our review of construction robotics in these settings highlights several knowledge gaps.We focused on four main areas:mechanism design,perception,planning,and control.Our analysis reveals challenges in practical applications,such as creating adaptable mechanisms,accurately perceiving changing environments,planning for unstructured sites,and optimizing control models.Future research should explore:biomimetic designs inspired by nature,multimodal data fusion for perception,adaptive planning strategies,and hybrid control models that combine data-driven and mechanism-based approaches.
文摘The traditional automated guided vehicle(AGV) on goods delivery faces the challenges when task space expands beyond 2 D plans. 3 D environments such as uneven terrain, ramps, and staircase are typical in construction site. Thus, the key to introducing this technology into construction industry is to improve AGV’s stability and autonomous navigation ability in more complex three-dimensional environments. In this paper, mobileman, a novel tracked autonomous guide vehicle, is introduced. Compared with other construction robots, mobileman maximizes its load capacity on the basis of assuring accessibility. Furthermore, its modular designs and self-balancing platform enable it to cope with more complex challenging scenarios, such as staircase with 35-degree sloped staircase, while another modular design featured automated loading and unloading functionality. The mobile base specifications were presented in section two, and modular designs and exploration of the navigation system on construction site were illustrated in the rest of sections.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金support from the Australian Research Council through the Discovery project(DP180102208).
文摘Building construction has developed from the use of primitive tools to that of machinery,with a tendency toward automation.Automation of processes and robotics can improve efficiency,accuracy and safety in construction.On the other hand,structural prefabrication for construction is increasingly being adopted worldwide to enhance productivity and to alleviate the environmental impact of conventional construction processes.The combination and application of automation and prefabrication technologies may therefore introduce new developments to the construction industry.This paper provides a comprehensive review of the use of automation technology for structural prefabrication and construction,including recent developments,challenges and future trends.Five stages following the sequence of construction are proposed:design,construction management,robotic manufacturing,autonomous transportation and automatic structural assembly.The paper concludes that the widespread use of automation technology is preferable to structural prefabrication for construction,and that the design for robotic construction introduced through connection innovations may be beneficial as a means of avoiding complex operations and thus improving the efficiency of robotic assembly processes.
基金supported by National Natural Science Foundation of China(No.50475011).
文摘The tele-operation robotic system which consists of an excavator as the construction robot,and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas.In order to accomplish a precise task,the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment.A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove.Namely,the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston,and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder.Moreover,the variable gain improved algorithm is developed to overcome the defect for grasping soft object.Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(RS-2024-00353461).
文摘Deep reinforcement learning(DRL)remains underexplored within architectural robotics,particularly in relation to self-learning of architectural design principles and designaware robotic fabrication.To address this gap,we applied established DRL methods to enable robot arms to autonomously learn design rules in a pilot block wall assembly-design scenario.Recognizing the complexity inherent in such learning tasks,the problem was strategically decomposed into two sub-tasks:(i)target reaching(T1),modeled within a continuous action space,and(ii)sequential planning(T2),formulated within a discrete action space.For T1,we evaluated major DRL algorithms―Proximal Policy Optimization(PPO),Advantage Actor-Critic(A2C),Deep Deterministic Policy Gradient,Twin Delayed Deep Deterministic Policy Gradient,and Soft Actor-Critic(SAC),and PPO,A2C,and Double Deep Q-Network(DDQN)were tested for T2.Performance was assessed based on training efficacy,reliability,and two novel metrics:degree index and variation index.Our results revealed that SAC was the best for T1,whereas DDQN excelled in T2.Notably,DDQN exhibited strong learning adaptability,yielding diverse final layouts in response to varying initial conditions.
基金supported by the National Natural Science Foundation of China (Grants nos.71732001 and 71821001)the major science and technology project in Hubei Province,China:Key Technologies and Applications of Intelligent Construction (2020ACA006).
文摘Engineering inspection and maintenance technologies play an important role in safety,operation,maintenance and management of buildings.In project construction control,supervision of engineering quality is a difficult task.To address such inspection and maintenance issues,this study presents a computer-vision-guided semi-autonomous robotic system for identification and repair of concrete cracks,and humans can make repair plans for this system.Concrete cracks are characterized through computer vision,and a crack feature database is established.Furthermore,a trajectory generation and coordinate transformation method is designed to determine the robotic execution coordinates.In addition,a knowledge base repair method is examined to make appropriate decisions on repair technology for concrete cracks,and a robotic arm is designed for crack repair.Finally,simulations and experiments are conducted,proving the feasibility of the repair method proposed.The result of this study can potentially improve the performance of on-site automatic concrete crack repair,while addressing such issues as high accident rate,low efficiency,and big loss of skilled workers.