针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
文摘针对传统SLAM算法特征跟踪匹配时效过低,光流与特征点融合算法跟踪精度较差以及机器人曲线运动时易选取到图像质量较差的关键帧导致系统定位精度较低等问题,提出一种曲线运动下基于关键帧补偿决策的快速SLAM算法(Fast Simultaneous Localization and Mapping,FA-SLAM)。该算法将LK光流与ORB特征点进行融合,通过在光流跟踪中实行双阈值约束自适应特征匹配策略,减少计算冗余,快速计算相机位姿,提高了系统实时性与跟踪精度。与此同时,为避免机器人曲线运动时易选取到图像质量较差的关键帧,导致系统定位精度不足,提出一种重新定义图像质量的关键帧补偿决策,通过判定当前帧活跃特征点的数量选取高质量的图像作为活跃关键帧,提高机器人的定位精度。将该算法在TUM公开数据集上进行测试,结果表明该算法相比ORB-SLAM2运行时间减少了43.1%,绝对轨迹误差缩小了31.8%。