In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or in...In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.展开更多
A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff funct...A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.展开更多
A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for...A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
基金supported by the Scientific Research Fun of Sichuan Normal University(11ZDL01)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.
基金the Natural Science Foundation of Education Department of Sichuan Province of China(No.07ZA092)the Foundation of Taiwan Science Council
文摘A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.
文摘A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.