期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems 被引量:1
1
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 constrained multi-objective optimization(cmops) evolutionary multitasking knowledge transfer single constraint.
在线阅读 下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization 被引量:3
2
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
在线阅读 下载PDF
A new evolutionary algorithm for constrained optimization problems
3
作者 王东华 刘占生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期8-12,共5页
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ... To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems. 展开更多
关键词 constrained optimization problems evolutionary algorithm POPULATION-BASED elite strategy single and multi-objective optimization
在线阅读 下载PDF
Constraint-Feature-Guided Evolutionary Algorithms for Multi-Objective Multi-Stage Weapon-Target Assignment Problems
4
作者 WANG Danjing XIN Bin +3 位作者 WANG Yipeng ZHANG Jia DENG Fang WANG Xianpeng 《Journal of Systems Science & Complexity》 2025年第3期972-999,共28页
The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candi... The allocation of heterogeneous battlefield resources is crucial in Command and Control(C2).Balancing multiple competing objectives under complex constraints so as to provide decisionmakers with diverse feasible candidate decision schemes remains an urgent challenge.Based on these requirements,a constrained multi-objective multi-stage weapon-target assignment(CMOMWTA)model is established in this paper.To solve this problem,three constraint-feature-guided multi-objective evolutionary algorithms(CFG-MOEAs)are proposed under three typical multi-objective evolutionary frameworks(i.e.,NSGA-Ⅱ,NSGA-Ⅲ,and MOEA/D)to obtain various high-quality candidate decision schemes.Firstly,a constraint-feature-guided reproduction strategy incorporating crossover,mutation,and repair is developed to handle complex constraints.It extracts common row and column features from different linear constraints to generate the feasible offspring population.Then,a variable-length integer encoding method is adopted to concisely denote the decision schemes.Moreover,a hybrid initialization method incorporating both heuristic methods and random sampling is designed to better guide the population.Systemic experiments are conducted on three CFG-MOEAs to verify their effectiveness.The superior algorithm CFG-NSGA-Ⅱamong three CFG-MOEAs is compared with two state-of-the-art CMOMWTA algorithms,and extensive experimental results demonstrate the effectiveness and superiority of CFG-NSGA-Ⅱ. 展开更多
关键词 Evolutionary algorithms constrained multi-objective optimization problem constraint handling weapon-target assignment
原文传递
基于多目标优化的电机驱动伺服转台切换模型
5
作者 叶超 郭绪猛 +1 位作者 张倩 王群京 《微特电机》 2018年第3期43-46,共4页
与平稳运行时相比,电机驱动伺服转台在过零或低速的工况下,会呈现出不良的系统特性。应用多个子模型分别描述伺服转台在不同工作状态下的输入输出关系,并基于切换系统理论建立整体的非线性模型。为辨识切换系统模型参数,构建有约束多目... 与平稳运行时相比,电机驱动伺服转台在过零或低速的工况下,会呈现出不良的系统特性。应用多个子模型分别描述伺服转台在不同工作状态下的输入输出关系,并基于切换系统理论建立整体的非线性模型。为辨识切换系统模型参数,构建有约束多目标优化问题,并应用多目标粒子群优化算法,对该问题进行求解。交叉验证实验比对说明了该切换模型的有效性。 展开更多
关键词 伺服转台 切换系统 参数辨识 有约束多目标优化问题 多目标粒子群优化算法
在线阅读 下载PDF
一种面向移动边缘计算的多用户细粒度任务卸载调度方法 被引量:14
6
作者 崔玉亚 张德干 +2 位作者 张婷 杨鹏 朱浩丽 《电子学报》 EI CAS CSCD 北大核心 2021年第11期2202-2207,共6页
在移动边缘计算中(Mobile Edge Computing,MEC),任务卸载可以有效地解决移动设备资源受限的问题,但是将全部任务都卸载到边缘服务器并非最优.本文提出一种面向移动边缘计算的多用户细粒度任务卸载调度新方法,把计算任务看作一个有向无环... 在移动边缘计算中(Mobile Edge Computing,MEC),任务卸载可以有效地解决移动设备资源受限的问题,但是将全部任务都卸载到边缘服务器并非最优.本文提出一种面向移动边缘计算的多用户细粒度任务卸载调度新方法,把计算任务看作一个有向无环图(Directed Acyclic Graph,DAG),对节点的执行位置和调度顺序进行了优化决策.考虑系统的延迟把计算卸载看作一个约束多目标优化问题(Constrained Multi-object Optimization Problem,CMOP),提出了一个改进的NSGA-Ⅱ算法来解决CMOP.所提出的算法能够实现本地和边缘的并行处理从而减少延迟.实验结果表明,算法能够在实际应用程序中做出最优决策. 展开更多
关键词 移动边缘计算 计算卸载 约束多目标优化问题 细粒度卸载调度 NSGA-Ⅱ
在线阅读 下载PDF
基于协同进化的约束多目标优化算法 被引量:3
7
作者 张祥飞 鲁宇明 张平生 《计算机应用》 CSCD 北大核心 2021年第7期2012-2018,共7页
针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法。第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并... 针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法。第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并通过双子种群协同进化的方式实现对收敛性和多样性的兼顾;最后采用标准约束多目标优化问题CF1~CF7、DOC1~DOC7和实际工程问题进行仿真实验,以测试所提算法的求解性能。实验结果表明,与基于约束支配准则的非支配排序遗传算法(NSGA-Ⅱ-CDP)、两阶段算法(ToP)、推拉搜索算法(PPS)和约束多目标优化的双存档进化算法(C-TAEA)相比,所提算法在反向世代距离(IGD)和超体积(HV)两个指标上均取得了良好的结果,说明所提算法可以有效地兼顾收敛性和多样性。 展开更多
关键词 约束多目标优化问题 双种群 协同进化 差分进化 PARETO前沿
在线阅读 下载PDF
基于两阶段搜索与动态资源分配的约束多目标进化算法 被引量:4
8
作者 马勇健 史旭华 王佩瑶 《计算机应用》 CSCD 北大核心 2024年第1期269-277,共9页
解决约束多目标优化问题(CMOP)的难点在于平衡目标优化和约束满足的同时兼顾解集的收敛性和多样性。为解决具有大型不可行区域和较小可行区域的复杂约束多目标优化问题,提出一种基于两阶段搜索与动态资源分配的约束多目标进化算法(TSDRA... 解决约束多目标优化问题(CMOP)的难点在于平衡目标优化和约束满足的同时兼顾解集的收敛性和多样性。为解决具有大型不可行区域和较小可行区域的复杂约束多目标优化问题,提出一种基于两阶段搜索与动态资源分配的约束多目标进化算法(TSDRA)。该算法在第一阶段通过忽略约束跨越不可行区域;然后在第二阶段通过动态分配两种计算资源协调局部开发和全局探索,兼顾算法的收敛性和多样性。在LIRCMOP和MW系列测试问题上进行的仿真实验结果表明,与四个代表性的算法CMOEA-MS(Constrained Multi-Objective Evolutionary Algorithm with Multiple Stages)、ToP(Two-phase)、PPS(Push and Pull Search)和MSCMO(Multi Stage Constrained Multi-Objective evolutionary algorithm)相比,所提算法在反转世代距离(IGD)和超体积(HV)上得到了更优异的结果。在LIRCMOP系列测试问题上,TSDRA获得了10个最佳的IGD值和9个最佳的HV值;在MW系列测试问题上,TSDRA获得了9个最佳的IGD值和10个最佳的HV值,表明所提算法可以更有效地解决具有大型不可行区域和较小可行区域的问题。 展开更多
关键词 约束多目标优化问题 两阶段搜索 资源分配 非支配排序 收敛性 多样性
在线阅读 下载PDF
基于双阶段搜索的约束进化多任务优化算法 被引量:2
9
作者 赵楷文 王鹏 童向荣 《计算机应用》 CSCD 北大核心 2024年第5期1415-1422,共8页
高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现... 高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。 展开更多
关键词 约束多目标优化问题 进化多任务优化算法 双阶段进化机制 进化算法 约束处理技术
在线阅读 下载PDF
约束多目标进化算法研究进展 被引量:1
10
作者 朱亚文 周红标 +1 位作者 李杨 徐浩渊 《计算机应用研究》 CSCD 北大核心 2022年第9期2582-2590,2602,共10页
约束多目标进化算法(CMOEAs)能够同时处理多个相互冲突的目标函数和约束条件,引导种群逼向可行域的最优解,受到了研究者的广泛重视。首先介绍了约束多目标优化问题(CMOPs)的相关定义和多目标进化算法(MOEAs)的三种分类;其次,系统地分析... 约束多目标进化算法(CMOEAs)能够同时处理多个相互冲突的目标函数和约束条件,引导种群逼向可行域的最优解,受到了研究者的广泛重视。首先介绍了约束多目标优化问题(CMOPs)的相关定义和多目标进化算法(MOEAs)的三种分类;其次,系统地分析了当前CMOEAs中约束处理机制,凝练出当前主要的四种约束处理方法;然后,从基于支配、基于指标、基于分解三个方面对CMOEAs的研究进展进行了详细综述;最后,指明了CMOEAs存在的挑战和未来研究方向。 展开更多
关键词 约束多目标优化问题 约束多目标进化算法 基于支配 基于指标 基于分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部