In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,...In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.展开更多
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop...Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj...Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.展开更多
A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives...A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.展开更多
In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a N...In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.展开更多
This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach...This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.展开更多
This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved pr...This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality.展开更多
The development of automated high-throughput experimental platforms has enabled fast sampling of high-dimensional decision spaces.To reach target properties efficiently,these platforms are increasingly paired with int...The development of automated high-throughput experimental platforms has enabled fast sampling of high-dimensional decision spaces.To reach target properties efficiently,these platforms are increasingly paired with intelligent experimental design.However,current optimizers show limitations in maintaining sufficient exploration/exploitation balance for problems dealing with multiple conflicting objectives and complex constraints.Here,we devise an Evolution-Guided Bayesian Optimization(EGBO)algorithm that integrates selection pressure in parallel with a q-Noisy Expected Hypervolume Improvement(qNEHVI)optimizer;this not only solves for the Pareto Front(PF)efficiently but also achieves better coverage of the PF while limiting sampling in the infeasible space.展开更多
Financial market has systemic complexity and uncertainty.For investors,return and risk often coexist.How to rationally allocate funds into different assets and achieve excess returns with effectively controlling risk ...Financial market has systemic complexity and uncertainty.For investors,return and risk often coexist.How to rationally allocate funds into different assets and achieve excess returns with effectively controlling risk are main problems to be solved in the field of portfolio optimization(PO).At present,due to the influence of modeling and algorithm solving,the PO models established by many researchers are still mainly focused on single-stage single-objective models or single-stage multiobjective models.PO is actually considered as a multi-stage multi-objective optimization problem in real investment scenarios.It is more difficult than the previous single-stage PO model for meeting the realistic requirements.In this paper,the authors proposed a mean-improved stable tail adjusted return ratio-maximum drawdown rate(M-ISTARR-MD)PO model which effectively characterizes the real investment scenario.In order to solve the multi-stage multi-objective PO model with complex multi-constraints,the authors designed a multi-stage constrained multi-objective evolutionary algorithm with orthogonal learning(MSCMOEA-OL).Comparing with four well-known intelligence algorithms,the MSCMOEA-OL algorithm has competitive advantages in solving the M-ISTARR-MD model on the proposed constructed carbon neutral stock dataset.This paper provides a new way to construct and solve the complex PO model.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical ...The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll...Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025).展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt...Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.展开更多
基金partly supported by the National Natural Science Foundation of China(62076225)。
文摘In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs.
基金supported in part by the National Key Research and Development Program of China(2022YFD2001200)the National Natural Science Foundation of China(62176238,61976237,62206251,62106230)+3 种基金China Postdoctoral Science Foundation(2021T140616,2021M692920)the Natural Science Foundation of Henan Province(222300420088)the Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT023)the Program for Science&Technology Innovation Teams in Universities of Henan Province(23IRTSTHN010).
文摘Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
基金supported in part by the National Natural Science Fund for Outstanding Young Scholars of China (61922072)the National Natural Science Foundation of China (62176238, 61806179, 61876169, 61976237)+2 种基金China Postdoctoral Science Foundation (2020M682347)the Training Program of Young Backbone Teachers in Colleges and Universities in Henan Province (2020GGJS006)Henan Provincial Young Talents Lifting Project (2021HYTP007)。
文摘Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.
基金Supported by the National Natural Science Foundation of Chi- na(61075113) the Excellent Young Teacher Foundation of Heilongjiang Province of China (1155G18) the Fundamental Research Funds for the Central Universities (HEUCFZl209)
文摘A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.
基金supported by the Major National Science & Technology Specific Project of China under Grants No.2010ZX03002-007-02,No.2009ZX03002-002,No.2010ZX03002-002-03
文摘In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.
文摘This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.
基金partially supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(2022YFE0114200)the National Natural Science Foundation of China(U20A6004).
文摘This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality.
基金funding from AME Programmatic Funds by the Agency for Science,Technology and Research under Grant No.A1898b0043 and No.A20G9b0135KH also acknowledges funding from the National Research Foundation(NRF),Singapore under the NRF Fellowship(NRF-NRFF13-2021-0011)+2 种基金SAK and FMB also acknowledge funding from the 25th NRF CRP programme(NRF-CRP25-2020RS-0002)QL also acknowledges support from the NRF fellowship(project No.NRF-NRFF13-2021-0005)the Ministry of Education,Singapore,under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials(I-FIM,project No.EDUNC-33-18-279-V12).
文摘The development of automated high-throughput experimental platforms has enabled fast sampling of high-dimensional decision spaces.To reach target properties efficiently,these platforms are increasingly paired with intelligent experimental design.However,current optimizers show limitations in maintaining sufficient exploration/exploitation balance for problems dealing with multiple conflicting objectives and complex constraints.Here,we devise an Evolution-Guided Bayesian Optimization(EGBO)algorithm that integrates selection pressure in parallel with a q-Noisy Expected Hypervolume Improvement(qNEHVI)optimizer;this not only solves for the Pareto Front(PF)efficiently but also achieves better coverage of the PF while limiting sampling in the infeasible space.
基金supported by the National Natural Science Foundation of China under Grant No.61973042Beijing Natural Science Foundation under Grant No.1202020。
文摘Financial market has systemic complexity and uncertainty.For investors,return and risk often coexist.How to rationally allocate funds into different assets and achieve excess returns with effectively controlling risk are main problems to be solved in the field of portfolio optimization(PO).At present,due to the influence of modeling and algorithm solving,the PO models established by many researchers are still mainly focused on single-stage single-objective models or single-stage multiobjective models.PO is actually considered as a multi-stage multi-objective optimization problem in real investment scenarios.It is more difficult than the previous single-stage PO model for meeting the realistic requirements.In this paper,the authors proposed a mean-improved stable tail adjusted return ratio-maximum drawdown rate(M-ISTARR-MD)PO model which effectively characterizes the real investment scenario.In order to solve the multi-stage multi-objective PO model with complex multi-constraints,the authors designed a multi-stage constrained multi-objective evolutionary algorithm with orthogonal learning(MSCMOEA-OL).Comparing with four well-known intelligence algorithms,the MSCMOEA-OL algorithm has competitive advantages in solving the M-ISTARR-MD model on the proposed constructed carbon neutral stock dataset.This paper provides a new way to construct and solve the complex PO model.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金National Natural Science Foundation of China(No.52373281)National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)。
文摘The research,fabrication and development of piezoelectric nanofibrous materials offer effective solutions to the challenges related to energy consumption and non-renewable resources.However,enhancing their electrical output still remains a significant challenge.Here,a strategy of inducing constrained phase separation on single nanofibers via shear force was proposed.Employing electrospinning technology,a polyacrylonitrile/polyvinylidene difluoride(PAN/PVDF)nanofibrous membrane was fabricated in one step,which enabled simultaneous piezoelectric and triboelectric conversion within a single-layer membrane.Each nanofiber contained independent components of PAN and PVDF and exhibited a rough surface.The abundant frictional contact points formed between these heterogeneous components contributed to an enhanced endogenous triboelectric output,showcasing an excellent synergistic effect of piezoelectric and triboelectric response in the nanofibrous membrane.Additionally,the component mass ratio influenced the microstructure,piezoelectric conformation and piezoelectric performance of the PAN/PVDF nanofibrous membranes.Through comprehensive performance comparison,the optimal mass ratio of PAN to PVDF was determined to be 9∶1.The piezoelectric devices made of the optimal PAN/PVDF nanofibrous membranes with rough nanofiber surfaces generated an output voltage of 20 V,which was about 1.8 times that of the smooth one at the same component mass ratio.The strategy of constrained phase separation on the surface of individual nanofibers provides a new approach to enhance the output performance of single-layer piezoelectric nanofibrous materials.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported in part by the Scientific Research Fund of National Natural Science Foundation of China(Grant No.62372168)the Hunan Provincial Natural Science Foundation of China(Grant No.2023JJ30266)+2 种基金the Research Project on teaching reform in Hunan province(No.HNJG-2022-0791)the Hunan University of Science and Technology(No.2022-44-8)the National Social Science Funds of China(19BZX044).
文摘Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025).
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
文摘Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.