For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations i...Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.展开更多
The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the ba...The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.展开更多
To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s typ...To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.展开更多
A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic ...A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
Conformal invariance and conserved quantities for a nonholonomic system of Chetaev's type with variable mass are studied. The conformal factor expressions are derived. The necessary and sufficient conditions are obta...Conformal invariance and conserved quantities for a nonholonomic system of Chetaev's type with variable mass are studied. The conformal factor expressions are derived. The necessary and sufficient conditions are obtained to make the system's con- formal invariance Lie symmetrical. The conformal invariance of the weak and strong Lie symmetries for the system is given. The corresponding conserved quantities of the system are derived. Finally, an application of the result is shown with an example.展开更多
This paper analyzes the symmetry of Lagrangians and the conserved quantity for the holonomic non-conservative system in the event space. The criterion and the definition of the symmetry are proposed first, then a quan...This paper analyzes the symmetry of Lagrangians and the conserved quantity for the holonomic non-conservative system in the event space. The criterion and the definition of the symmetry are proposed first, then a quantity caused by the symmetry and its existence condition are given. An example is shown to illustrate the application of the result at the end.展开更多
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
文摘Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Outstanding Young Scientist Fund of China (Grant No. 10725209)the National Natural Science Foundation of China (Grant Nos. 90816001 and 11102060)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093108110005)the Shanghai Subject Chief Scientist Project, China (Grant No. 09XD1401700)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.
基金Supported by the National Natural Science Foundation of China(10772025)the Key Program of the National Natural Science Foundation of China(10932002)
文摘To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (No. 10932002)the Natural Science Foundation of Zhejiang Province of China (No. LY12A02008)
文摘Conformal invariance and conserved quantities for a nonholonomic system of Chetaev's type with variable mass are studied. The conformal factor expressions are derived. The necessary and sufficient conditions are obtained to make the system's con- formal invariance Lie symmetrical. The conformal invariance of the weak and strong Lie symmetries for the system is given. The corresponding conserved quantities of the system are derived. Finally, an application of the result is shown with an example.
基金Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 09CX04018A)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011AM012)the Postgraduate's Innovation Foundation of China University of Petroleum (East China) (Grant No. CXYB11-12)
文摘This paper analyzes the symmetry of Lagrangians and the conserved quantity for the holonomic non-conservative system in the event space. The criterion and the definition of the symmetry are proposed first, then a quantity caused by the symmetry and its existence condition are given. An example is shown to illustrate the application of the result at the end.