Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges...Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).展开更多
The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been doc...The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been documented.This study aims to answer the following questions:Will the typical soums in the SRB become more overgrazed in the future?What optimal strategy should be implemented?Multisource data were integrated and utilized to model the pastoral system of typical soums using a system dynamics approach.Future scenarios under three SSP-RCPs were projected using the model.The conclusions are as follows:(1)From upstream to downstream,rational scenarios for pastoral system transferred from SSP1-RCP2.6 to SSP2-RCP4.5,which reflect improved productivity at the expense of ecosystem stability.(2)Compared with that during the historical period of 2000-2020,the projected carrying capacity of the soums decreases by 15.2%-37.3%,whereas the number of livestock continues to increase.Consequently,the stocking rate is expected to increase from 0.32-1.16 during 2000-2020 to 1.26-2.02 during 2021-2050,indicating that rangeland will become more overloaded.(3)A livestock reduction strategy based on future livestock stock and grassland carrying capacity scenarios was proposed to maintain a dynamic forage-livestock equilibrium.It is suggested that reducing livestock is a practical option for harmonizing grassland conservation with livestock husbandry development.展开更多
Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluatin...Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluating YRB wetland conservation importance using waterbirds as indicators and applying Ramsar,Important Bird Areas(IBA),and East Asian-Australasian Flyway(EAAF)criteria.We integrated coordinated surveys with citizen science data,creating a framework that tackles data deficiencies along the under-monitored Central Asian Flyway(CAF).Our analysis identified 75 priority wetlands,supporting 15 threatened species and 49 exceeding global/flyway 1%thresholds,highlighting the basin's biodiversity.We observed strong seasonal habitat use,with high-altitude wetlands vital for breeding and migration,and the Yellow River Delta providing year-round refuge.This research also provided data to refine Baer's Pochard population estimates.Alarmingly,one-third of the identified priority areas,primarily rivers and lakes,remain unprotected.To address this,we recommend systematic surveys,enhanced protected areas,OECMs,and targeted wetland restoration.This study underscores the YRB's role in regional conservation and provides essential data for adaptive management,particularly emphasizing the CAF's importance.展开更多
基金the Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia(RCEECA),the construction and joint research for the China-Tajikistan“Belt and Road”Joint Laboratory on Biodiversity Conservation and Sustainable Use(2024YFE0214200)the Shanghai Cooperation Organization Partnership and International Technology Cooperation Plan of Science and Technology Projects(2023E01018,2025E01056)the Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2024VBC0006).
文摘Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).
基金National Natural Science Foundation of China,No.32161143025,No.42371283,No.W2412155National Key R&D Program of China,No.2022YFE0119200。
文摘The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been documented.This study aims to answer the following questions:Will the typical soums in the SRB become more overgrazed in the future?What optimal strategy should be implemented?Multisource data were integrated and utilized to model the pastoral system of typical soums using a system dynamics approach.Future scenarios under three SSP-RCPs were projected using the model.The conclusions are as follows:(1)From upstream to downstream,rational scenarios for pastoral system transferred from SSP1-RCP2.6 to SSP2-RCP4.5,which reflect improved productivity at the expense of ecosystem stability.(2)Compared with that during the historical period of 2000-2020,the projected carrying capacity of the soums decreases by 15.2%-37.3%,whereas the number of livestock continues to increase.Consequently,the stocking rate is expected to increase from 0.32-1.16 during 2000-2020 to 1.26-2.02 during 2021-2050,indicating that rangeland will become more overloaded.(3)A livestock reduction strategy based on future livestock stock and grassland carrying capacity scenarios was proposed to maintain a dynamic forage-livestock equilibrium.It is suggested that reducing livestock is a practical option for harmonizing grassland conservation with livestock husbandry development.
基金The Science and Technology Basic Resources Survey Project,No.2021FY101002Wetland Protection and Restoration in China Funded by the Palson Institute and Laoniu Foundation,UNDP-GEF Flyway Project,No.PIMS ID:6110。
文摘Effective conservation relies on robust assessments;however,the lack of waterbird data in the Yellow River Basin(YRB)has led to an underestimation of key habitat significance.This study addressed this gap by evaluating YRB wetland conservation importance using waterbirds as indicators and applying Ramsar,Important Bird Areas(IBA),and East Asian-Australasian Flyway(EAAF)criteria.We integrated coordinated surveys with citizen science data,creating a framework that tackles data deficiencies along the under-monitored Central Asian Flyway(CAF).Our analysis identified 75 priority wetlands,supporting 15 threatened species and 49 exceeding global/flyway 1%thresholds,highlighting the basin's biodiversity.We observed strong seasonal habitat use,with high-altitude wetlands vital for breeding and migration,and the Yellow River Delta providing year-round refuge.This research also provided data to refine Baer's Pochard population estimates.Alarmingly,one-third of the identified priority areas,primarily rivers and lakes,remain unprotected.To address this,we recommend systematic surveys,enhanced protected areas,OECMs,and targeted wetland restoration.This study underscores the YRB's role in regional conservation and provides essential data for adaptive management,particularly emphasizing the CAF's importance.