This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution i...This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.展开更多
This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circui...This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circuit model,it is verified that the proposed CPMVM can reduce the unipolar leakage flux.In order to reduce the torque ripple of machine and improve the output torque of machine,the flux barrier is placed on the rotor of the proposed machine.Then,the parameters of the proposed CPMVM are optimized and determined.Moreover,the electromagnetic performance,including no-load air-gap flux density,average torque and torque ripple,flux linkage,back-electromotive force,cogging torque,average torque,torque ripple,power factor and loss,is compared with conventional surface-mounted permanent magnet vernier machine(SPMVM)and CPMVM.Finally,it is demonstrated that proposed CPMVM with flux barrier can effectively reduce the unipolar leakage flux and greatly reduce the torque ripple of machine.Also,compared with the SPMVM,the proposed CPMVM with flux barrier saves more than 45%of the permanent magnet material without reducing output torque.展开更多
Consequent-pole permanent magnet synchronous machines(CP-PMSMs)have attracted considerable interest as a means of reducing manufacturing costs through a marked reduction in the volume of permanent magnet required to m...Consequent-pole permanent magnet synchronous machines(CP-PMSMs)have attracted considerable interest as a means of reducing manufacturing costs through a marked reduction in the volume of permanent magnet required to meet a particular torque specification.In this paper,novel rotor topologies for a CP-PMSM are derived to unlock the full design space potential.The ON/OFF method is introduced to manage the laminated steel material distribution over the rotor region,high average torque and low torque ripple are the objects of rotor design,and the immune algorithm is used to search for the optimal material distribution for the formulated problem.More than 9000 different rotor topologies are created and evaluated within 12 hours by this methodology.The optimal topologies under different design strategy are presented,and performance of these topologies are analyzed.The analysis results show that the proposed methodology can deliver novel rotor topologies for the CP-PMSM with surprising torque quality since the torque ripple is suppressed to a low level with no average torque sacrifice.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant 51677169 and Grant 51637009 and by the Fundamental Research Funds for the Central Universities under Grant 2017QNA4016.
文摘This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.
基金supported in part by the National Natural Science Foundation of China under Projects 52177044 and 52025073in part by the China Postdoctoral Science Foundation under Project 2019T120395+3 种基金in part by Hong Kong Scholars Program under Project XJ2019031in part by the Natural Science Foundation of Jiangsu Higher Education Institutions under Project 21KJA470004in part by Qing Lan Project of Jiangsu Provincein part by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This paper proposes a new consequent-pole permanent magnet vernier machine(CPMVM),which can be regarded as a combination of two conventional CPMVM with opposite polarities.Based on the simplified axial magnetic circuit model,it is verified that the proposed CPMVM can reduce the unipolar leakage flux.In order to reduce the torque ripple of machine and improve the output torque of machine,the flux barrier is placed on the rotor of the proposed machine.Then,the parameters of the proposed CPMVM are optimized and determined.Moreover,the electromagnetic performance,including no-load air-gap flux density,average torque and torque ripple,flux linkage,back-electromotive force,cogging torque,average torque,torque ripple,power factor and loss,is compared with conventional surface-mounted permanent magnet vernier machine(SPMVM)and CPMVM.Finally,it is demonstrated that proposed CPMVM with flux barrier can effectively reduce the unipolar leakage flux and greatly reduce the torque ripple of machine.Also,compared with the SPMVM,the proposed CPMVM with flux barrier saves more than 45%of the permanent magnet material without reducing output torque.
基金supported in part by The Japan Society for the Promotion of Science(Scientific Research C)of Japan under Project 18K04076.
文摘Consequent-pole permanent magnet synchronous machines(CP-PMSMs)have attracted considerable interest as a means of reducing manufacturing costs through a marked reduction in the volume of permanent magnet required to meet a particular torque specification.In this paper,novel rotor topologies for a CP-PMSM are derived to unlock the full design space potential.The ON/OFF method is introduced to manage the laminated steel material distribution over the rotor region,high average torque and low torque ripple are the objects of rotor design,and the immune algorithm is used to search for the optimal material distribution for the formulated problem.More than 9000 different rotor topologies are created and evaluated within 12 hours by this methodology.The optimal topologies under different design strategy are presented,and performance of these topologies are analyzed.The analysis results show that the proposed methodology can deliver novel rotor topologies for the CP-PMSM with surprising torque quality since the torque ripple is suppressed to a low level with no average torque sacrifice.