Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric...Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.展开更多
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for proce...The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.展开更多
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper...Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper-connectivity,among individuals with major depressive disorder(MDD).However,the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear.Hence,we analyzed dynamic FC(dFC)between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls(HCs)to investigate time-varying changes in thalamocortical FC in patients with MDD.Moreover,dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time.Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated.We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks,compared with the HCs.In addition,MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration.The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort.Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms.Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients.The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.展开更多
AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gende...AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.展开更多
Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activit...Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential fo...BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.展开更多
Attention deficit hyperactivity disorder(ADHD),a prevalent neurodevelopmental disorder influenced by both genetic and environmental factors,remains poorly understood regarding how its polygenic risk score(PRS)impacts ...Attention deficit hyperactivity disorder(ADHD),a prevalent neurodevelopmental disorder influenced by both genetic and environmental factors,remains poorly understood regarding how its polygenic risk score(PRS)impacts functional networks and symptomology.This study capitalized on data from 11,430 children in the Adolescent Brain Cognitive Development study to explore the interplay between PRSADHD,brain function,and behavioral problems,along with their interactive effects.The results showed that children with a higher PRSADHD exhibited more severe attention deficits and rule-breaking problems,and experienced sleep disturbances,particularly in initiating and maintaining sleep.We also identified the central executive network,default mode network,and sensory-motor network as the functional networks most associated with PRS and symptoms in ADHD cases,with potential mediating roles.Particularly,the impact of PRSADHD was enhanced in children experiencing heightened sleep disturbances,emphasizing the need for early intervention in sleep issues to potentially mitigate subsequent ADHD symptoms.展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i...BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.展开更多
Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network con...Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.展开更多
Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain f...Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.展开更多
The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippoca...The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.展开更多
People with schizophrenia exhibit impaired social cognitive functions, particularly emotion regulation. Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstra...People with schizophrenia exhibit impaired social cognitive functions, particularly emotion regulation. Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia, suggesting its important role in emotion processing in patients. We used the resting-state functional connectivity approach, setting a functionally relevant region, the vMPFC, as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients. We found hypo-connectivity between the vMPFC and the medial frontal cortex, right middle temporal lobe (MTL), right hippocampus, parahippocampal cortex (PHC) and amygdala. Further, there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas. Among these connectivity alterations, reduced vMPFC-DLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale, while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients. These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia. The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.展开更多
Objective:To clarify altered whole brain functional connectivity of the anterior cingulate cortex(ACC)in functional dyspepsia(FD)patients,and then to explore cerebral influence of acupuncture with deqi treating for FD...Objective:To clarify altered whole brain functional connectivity of the anterior cingulate cortex(ACC)in functional dyspepsia(FD)patients,and then to explore cerebral influence of acupuncture with deqi treating for FD.Methods:Thirty-two FD patients and 35 healthy subjects(HS)were firstly scanned by the resting-state blood oxygenation level-dependent functional magnetic resonance imaging(BOLD-fMRI)to compare differences of ACC-based functional connectivity(FC).Then 32 FD patients were randomized to receive 20 sessions’acupuncture treatment with(n=16)and without deqi(n=16),as well as underwent functional magnetic resonance imaging(fMRI)scans after treatment.After group re-division according to deqi response,changes of ACC subregions-based resting-state FC(rsFC)were compared between the actual with and without deqi group.Two seeds with bilateral of each were selected as regions of interest(ROIs)of the ACC,including two from the dorsal ACC:S2(BA24)(x=±5,y=2,z=46,r=3.5 mm)and two from the pregenual ACC:17(BA24)(x=±5,y=38,z=6,r=3.5 mm).The clinical changes of the Nepean Dyspepsia Index(NDI)that measuring symptoms and quality of life(QOL)were also used to further assess the correlation with ACC subregions rsFC in FD patients.Results:Compared to HS,FD patients showed significantly increased ACC subregions rsFC with left fusiform gyrus,temporal cortex,hippocampus(HIPP)/amygdala,temporal pole,and right INS,superior occipital gyrus,and bilateral precuneus,superior parietal lobule(SPL),and decreased rsFC with left postcentral/precentral gyrus(PoG/PrG),supplementary motor area(SMA)and right cerebellum.32 FD patients which were then re-divided into the actual deqi group(n=16)and actual without deqi group(n=16).The decrease of the NDI symptom score(pre-pos)in the actual deqi group was significantly greater than that in the actual without deqi group(P<0.05).Among the two groups,the actual deqi group showed increased ACC subregions rsFC with right SMA and bilateral PrG/PoG,and decreased rsFC with right precuneus,middle occipital gyrus,bilateral posterior cingulate cortex(PCC),HIPP/paraHIPP,angular gyrus and SPL after treatment.In addition,the changed NDI QOL scores(pre-post)of the actual deqi group was significantly positively correlated with their Fisher’s transformed Z value of the altered ACC subregion(left I7)rsFC with right SPL(r=-0.597,P=0.04<0.05,FDR corrected P>0.05).Conclusion:The results tested the hypothesis that the advantage of deqi on efficacy is related to affecting the ACC subregions rsFC.It suggested that deqi might participate in the adaptive modulation of disrupted relationship between the ACC subregions and the default mode network(DMN).展开更多
Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer’s disease(AD)or amnestic mild cognitive impairment(aMCI).However,most studies examined traditional resting state functi...Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer’s disease(AD)or amnestic mild cognitive impairment(aMCI).However,most studies examined traditional resting state functional connections,ignoring the instantaneous connection mode of the whole brain.In this case-control study,we used a new method called dynamic functional connectivity(DFC)to look for abnormalities in patients with AD and aMCI.We calculated dynamic functional connectivity strength from functional magnetic resonance imaging data for each participant,and then used a support vector machine to classify AD patients and normal controls.Finally,we highlighted brain regions and brain networks that made the largest contributions to the classification.We found differences in dynamic function connectivity strength in the left precuneus,default mode network,and dorsal attention network among normal controls,aMCI patients,and AD patients.These abnormalities are potential imaging markers for the early diagnosis of AD.展开更多
Manual acupuncture is widely used for pain relief and stress control.Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regi...Manual acupuncture is widely used for pain relief and stress control.Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions.To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level,we acupuncture at ST36 of a right leg to obtain electroencephalograph(EEG) signals.By coherence estimation,we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states.The resulting synchronization matrices are converted into functional networks by applying a threshold,and the clustering coefficients and path lengths are computed as a function of threshold.The results show that acupuncture can increase functional connections and synchronizations between different brain areas.For a wide range of thresholds,the clustering coefficient during acupuncture and postacupuncture period is higher than that during the pre-acupuncture control period,whereas the characteristic path length is shorter.We provide further support for the presence of "small-world" network characteristics in functional networks by using acupuncture.These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture,which could contribute to the understanding of the effects of acupuncture on the entire brain,as well as the neurophysiological mechanisms underlying acupuncture.Moreover,the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.展开更多
Auditory verbal hallucination(AVH)is emphasized as a pathological hallmark of schizophrenia.Neuroimaging studies provide evidence linking AVH to overlapping functional abnormalities in distributed networks.However,no ...Auditory verbal hallucination(AVH)is emphasized as a pathological hallmark of schizophrenia.Neuroimaging studies provide evidence linking AVH to overlapping functional abnormalities in distributed networks.However,no clear conclusion has still been reached.This study aimed to further explore the brain activity of patients with schizophrenia having AVH from both local activity(LA)and functional connectivity(FC)insights,while excluding confounding factors from other positive symptoms.A total of 42 patients with AVH(AVH patients group,APG),26 without AVH(non-AVH patients group,NPG),and 82 normal controls(NC)underwent resting-state functional magnetic resonance imaging(fMRI).LA measures,including regional homogeneity(ReHo)and fractional amplitude of low-frequency fluctuations(fALFF),and FC measures were evaluated to understand the neuroimaging mechanism of AVH.APG showed increased ReHo and fALFF in the bilateral putamen(Put)compared with NPG and NC.FC analysis(using bilateral putamen as seeds)revealed that all patients showed abnormal FC of multiple resting state network regions,including the anterior and post cingulate cortex,middle frontal gyrus,inferior parietal gyrus,and left angular gyrus.Interestingly,APG showed significantly decreased FC of insula extending to the superior temporal gyrus and inferior frontal gyrus compared with NPG and NC.The present findings suggested a significant correlation of abnormal LA and dysfunctional putamen-auditory cortical connectivity with the neuropathological mechanism of AVH,providing evidence for the functional disconnection hypothesis of schizophrenia.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
基金supported by the Natural Science Foundation of Shandong Province,ZR2024MH072Open Project of Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province,Xiangnan University,YXZN2022002+2 种基金Projects of Xiamen Scientific and Technological Plan,3502Z20199096 and 3502Z20209220the National Natural Science Foundation of China,61802330the Yantai City Science and Technology Innovation Development Plan,2023XDRH006.
文摘Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.
基金supported by the National Key Research and Development Program of China(2023YFF1203502)the National Natural Science Foundation of China(62171300,62301343,and 62394314)+1 种基金the Project of Cultivation for Young Top-Notch Talents of Beijing Municipal Institutions(BPHR202203109)the Capital Medical University Research and Development Fund(PYZ22027).
文摘The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金supported by the Science and Technology Innovation 2030-Major Projects(Nos.2021ZD0202000,2021ZD0200800,and 2021ZD0200701)the National Key Research and Development Program of China(No.2019YFA0706200)+1 种基金the National Natural Science Foundation of China(Nos.62227807,62202212,U21A20520,and U22A2033)the Science and Technology Program of Gansu Province(No.23YFGA0004),China.
文摘Thalamocortical circuitry has a substantial impact on emotion and cognition.Previous studies have demonstrated alterations in thalamocortical functional connectivity(FC),characterized by region-dependent hypo-or hyper-connectivity,among individuals with major depressive disorder(MDD).However,the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear.Hence,we analyzed dynamic FC(dFC)between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls(HCs)to investigate time-varying changes in thalamocortical FC in patients with MDD.Moreover,dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time.Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated.We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks,compared with the HCs.In addition,MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration.The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort.Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms.Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients.The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Key R&D Program of Jiangxi Province(No.20223BBH80014)+1 种基金Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.
基金supported by grants from the Nanjing Medical Technology Development Project(No.YKK19059)Excellent Young Doctor Training Program of Jiangsu Province Hospital of Chinese Medicine(No.2023QB0126)+1 种基金Jiangsu Province Graduate Research and Practice Innovation Program Project-School Assisted General Project(No.SJCX23_0804)the General project of Natural Science Foundat。
文摘Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金the National Key Research and Development Program of China,No.2021ZD0202000the National Natural Science Foundation of China,No.82101612 and No.82471570+1 种基金the Natural Science Foundation of Hunan Province,China,No.2022JJ40692the Science and Technology Innovation Program of Hunan Province,No.2021RC2040 and No.2024RC3056.
文摘BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.
基金supported by the National Natural Science Foundation of China(62373062,82022035,and 82001450)the Scientific and Technological Innovation 2030-The Major Project of the Brain Science and Brain-Inspired Intelligence Technology(2021ZD0200500)the Startup Funds for Talents at Beijing Normal University,and the China Postdoctoral Science Foundation(2022M710434).
文摘Attention deficit hyperactivity disorder(ADHD),a prevalent neurodevelopmental disorder influenced by both genetic and environmental factors,remains poorly understood regarding how its polygenic risk score(PRS)impacts functional networks and symptomology.This study capitalized on data from 11,430 children in the Adolescent Brain Cognitive Development study to explore the interplay between PRSADHD,brain function,and behavioral problems,along with their interactive effects.The results showed that children with a higher PRSADHD exhibited more severe attention deficits and rule-breaking problems,and experienced sleep disturbances,particularly in initiating and maintaining sleep.We also identified the central executive network,default mode network,and sensory-motor network as the functional networks most associated with PRS and symptoms in ADHD cases,with potential mediating roles.Particularly,the impact of PRSADHD was enhanced in children experiencing heightened sleep disturbances,emphasizing the need for early intervention in sleep issues to potentially mitigate subsequent ADHD symptoms.
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
基金Supported by the Pharmaceutical Science and Technology Project of Zhejiang Province,No.2023RC266the Natural Science Foundation of Ningbo,No.202003N4266.
文摘BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.
基金supported by the Guangzhou Municipal Key Discipline in Medicine(2021-2023)the Guangzhou High-level Clinical Key Specialty,the Guangzhou Research-oriented Hospital,the Innovative Clinical Technique of Guangzhou(2024-2026)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(grant number 2022A1515011567,2020A1515110565)the Guangzhou Science,Technology Planning Project(grant number 202201010714,202103000032)the National Natural Science Foundation of China(grant number 82471546)the Guangdong College Students Innovation and Entrepreneurship Training Project(grant number S202310570038)the Guangzhou Health Science and Technology Project(grant number 20231A010038)the Guangzhou Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Technology Project(grant number:20232A010013)the Science and Technology Plan Project of Guangzhou(2023A03J0842).
文摘Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.
基金supported by the National Natural Science Foundation of China(No.81473784)University Science Research Project of Anhui Province of China(No.KJ2017A298)+1 种基金the Key Project of the Youth Elite Support Plan in Universities of Anhui Province of China(No.gxyq ZD2016134)Construction Project of Scientific Research Innovation Platform of Anhui Province of China(No.2015TD033)
文摘Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.
基金supported by the National Natural Science Foundation of China (30825014,81061120529,30970814,81371488,91132727 and 30830046)the Key Program for Clinical Medicine and Science and Technology,Jiangsu Provincial Clinical Medical Research Center,China (BL2013025)
文摘The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.
基金supported by grants from the Beijing Municipal Science & Technology Commission(D0906001040191,D101107047810005,D101100050010051)the Beijing Natural Science Foundation(7102086)+3 种基金the Fund for Capital Medical Development and Research(2007-3059)the National Natural Science Foundation of China(81171409)Startup Foundation for Distinguished Research Professors of the Institute for Psychology(Y0CX492S03)Fund for Outstanding Talents in Beijing(2012D003034000003)
文摘People with schizophrenia exhibit impaired social cognitive functions, particularly emotion regulation. Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia, suggesting its important role in emotion processing in patients. We used the resting-state functional connectivity approach, setting a functionally relevant region, the vMPFC, as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients. We found hypo-connectivity between the vMPFC and the medial frontal cortex, right middle temporal lobe (MTL), right hippocampus, parahippocampal cortex (PHC) and amygdala. Further, there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas. Among these connectivity alterations, reduced vMPFC-DLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale, while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients. These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia. The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.
基金grants from the National Natural Science Foundation of Outstanding Youth Fund in China:81622052National Natural Science Foundation of China:81473602+2 种基金the major program of the National Natural Science Foundation of China:81590950the Ten Thousand Talent Program:W02020595Youth Science and Technology Innovative Team of Sichuan Province:2019JDTD0011。
文摘Objective:To clarify altered whole brain functional connectivity of the anterior cingulate cortex(ACC)in functional dyspepsia(FD)patients,and then to explore cerebral influence of acupuncture with deqi treating for FD.Methods:Thirty-two FD patients and 35 healthy subjects(HS)were firstly scanned by the resting-state blood oxygenation level-dependent functional magnetic resonance imaging(BOLD-fMRI)to compare differences of ACC-based functional connectivity(FC).Then 32 FD patients were randomized to receive 20 sessions’acupuncture treatment with(n=16)and without deqi(n=16),as well as underwent functional magnetic resonance imaging(fMRI)scans after treatment.After group re-division according to deqi response,changes of ACC subregions-based resting-state FC(rsFC)were compared between the actual with and without deqi group.Two seeds with bilateral of each were selected as regions of interest(ROIs)of the ACC,including two from the dorsal ACC:S2(BA24)(x=±5,y=2,z=46,r=3.5 mm)and two from the pregenual ACC:17(BA24)(x=±5,y=38,z=6,r=3.5 mm).The clinical changes of the Nepean Dyspepsia Index(NDI)that measuring symptoms and quality of life(QOL)were also used to further assess the correlation with ACC subregions rsFC in FD patients.Results:Compared to HS,FD patients showed significantly increased ACC subregions rsFC with left fusiform gyrus,temporal cortex,hippocampus(HIPP)/amygdala,temporal pole,and right INS,superior occipital gyrus,and bilateral precuneus,superior parietal lobule(SPL),and decreased rsFC with left postcentral/precentral gyrus(PoG/PrG),supplementary motor area(SMA)and right cerebellum.32 FD patients which were then re-divided into the actual deqi group(n=16)and actual without deqi group(n=16).The decrease of the NDI symptom score(pre-pos)in the actual deqi group was significantly greater than that in the actual without deqi group(P<0.05).Among the two groups,the actual deqi group showed increased ACC subregions rsFC with right SMA and bilateral PrG/PoG,and decreased rsFC with right precuneus,middle occipital gyrus,bilateral posterior cingulate cortex(PCC),HIPP/paraHIPP,angular gyrus and SPL after treatment.In addition,the changed NDI QOL scores(pre-post)of the actual deqi group was significantly positively correlated with their Fisher’s transformed Z value of the altered ACC subregion(left I7)rsFC with right SPL(r=-0.597,P=0.04<0.05,FDR corrected P>0.05).Conclusion:The results tested the hypothesis that the advantage of deqi on efficacy is related to affecting the ACC subregions rsFC.It suggested that deqi might participate in the adaptive modulation of disrupted relationship between the ACC subregions and the default mode network(DMN).
基金supported by the National Natural Science Foundation of China,No.81471120Fund Projects in Technology of the Foundation Strengthening Program of China,No.2019-JCJQ-JJ-151(both to XZ).
文摘Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer’s disease(AD)or amnestic mild cognitive impairment(aMCI).However,most studies examined traditional resting state functional connections,ignoring the instantaneous connection mode of the whole brain.In this case-control study,we used a new method called dynamic functional connectivity(DFC)to look for abnormalities in patients with AD and aMCI.We calculated dynamic functional connectivity strength from functional magnetic resonance imaging data for each participant,and then used a support vector machine to classify AD patients and normal controls.Finally,we highlighted brain regions and brain networks that made the largest contributions to the classification.We found differences in dynamic function connectivity strength in the left precuneus,default mode network,and dorsal attention network among normal controls,aMCI patients,and AD patients.These abnormalities are potential imaging markers for the early diagnosis of AD.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50537030)the National Natural Science Foundation of China (Grant Nos. 61072012 and 61172009)+1 种基金the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61104032 and 60901035)the Tianjin Municipal Natural Science Foundation,China (Grant No. 12JCZDJC21100)
文摘Manual acupuncture is widely used for pain relief and stress control.Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions.To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level,we acupuncture at ST36 of a right leg to obtain electroencephalograph(EEG) signals.By coherence estimation,we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states.The resulting synchronization matrices are converted into functional networks by applying a threshold,and the clustering coefficients and path lengths are computed as a function of threshold.The results show that acupuncture can increase functional connections and synchronizations between different brain areas.For a wide range of thresholds,the clustering coefficient during acupuncture and postacupuncture period is higher than that during the pre-acupuncture control period,whereas the characteristic path length is shorter.We provide further support for the presence of "small-world" network characteristics in functional networks by using acupuncture.These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture,which could contribute to the understanding of the effects of acupuncture on the entire brain,as well as the neurophysiological mechanisms underlying acupuncture.Moreover,the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.
基金'This study was supported by grants from the National 973 Program of China(No.201 lCB707805)the National Natural Science Foundation of China(No.91132301)the Natural Science Foundation of Hubei Province(No.2014CFB732).
文摘Auditory verbal hallucination(AVH)is emphasized as a pathological hallmark of schizophrenia.Neuroimaging studies provide evidence linking AVH to overlapping functional abnormalities in distributed networks.However,no clear conclusion has still been reached.This study aimed to further explore the brain activity of patients with schizophrenia having AVH from both local activity(LA)and functional connectivity(FC)insights,while excluding confounding factors from other positive symptoms.A total of 42 patients with AVH(AVH patients group,APG),26 without AVH(non-AVH patients group,NPG),and 82 normal controls(NC)underwent resting-state functional magnetic resonance imaging(fMRI).LA measures,including regional homogeneity(ReHo)and fractional amplitude of low-frequency fluctuations(fALFF),and FC measures were evaluated to understand the neuroimaging mechanism of AVH.APG showed increased ReHo and fALFF in the bilateral putamen(Put)compared with NPG and NC.FC analysis(using bilateral putamen as seeds)revealed that all patients showed abnormal FC of multiple resting state network regions,including the anterior and post cingulate cortex,middle frontal gyrus,inferior parietal gyrus,and left angular gyrus.Interestingly,APG showed significantly decreased FC of insula extending to the superior temporal gyrus and inferior frontal gyrus compared with NPG and NC.The present findings suggested a significant correlation of abnormal LA and dysfunctional putamen-auditory cortical connectivity with the neuropathological mechanism of AVH,providing evidence for the functional disconnection hypothesis of schizophrenia.
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.