Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network con...Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.展开更多
Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term La...Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.展开更多
During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face ...During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.展开更多
From April 14 to 18,Chinese President Xi Jinping made state visits to Vietnam,Malaysia,and Cambodia.This tour coincided with global upheaval caused by“reciprocal tariffs”imposed by U.S.President Donald Trump,which t...From April 14 to 18,Chinese President Xi Jinping made state visits to Vietnam,Malaysia,and Cambodia.This tour coincided with global upheaval caused by“reciprocal tariffs”imposed by U.S.President Donald Trump,which turned global eyes towards China and Southeast Asian nations to see how they would strengthen cooperation and respond to the“Trump effect.”展开更多
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric...Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.展开更多
On April 6th,the"Silk Road People-to-People Connectivity"China-Cambodia Traditional Instrument Concert was successfully held in Phnom Penh.The event was attended by Li Ji,Cultural Counsellor of the Chinese E...On April 6th,the"Silk Road People-to-People Connectivity"China-Cambodia Traditional Instrument Concert was successfully held in Phnom Penh.The event was attended by Li Ji,Cultural Counsellor of the Chinese Embassy in Cambodia,officials from Ministry of Culture and Fine Arts of Cambodia and Ministry of Commerce of Cambodia,along with vips from various sectors.展开更多
On May 10,2025,the"Silk Road People-to-People Connectivity"China-Africa Friendship for International Volunteer Service was held at the Hope Primary School in Mathare Slum,Nairobi,Kenya.The event was co-organ...On May 10,2025,the"Silk Road People-to-People Connectivity"China-Africa Friendship for International Volunteer Service was held at the Hope Primary School in Mathare Slum,Nairobi,Kenya.The event was co-organised by China NGO Network for International Exchanges(CNIE)and the Dream Building Service Association.Li Jun,Vice-President of CNIE delivered opening remarks at the event.展开更多
AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive...AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.展开更多
BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential fo...BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.展开更多
At the invitation of the Madagascar-China Friendship Group of the National Assembly of Madagascar,Li Jun,former Vice-Minister of the International Department of the CPC Central Committee and Vice-President of CNIE,led...At the invitation of the Madagascar-China Friendship Group of the National Assembly of Madagascar,Li Jun,former Vice-Minister of the International Department of the CPC Central Committee and Vice-President of CNIE,led a sixmember delegation to visit Madagascar from May 11th to 14th,2025.During the delegation's visit,Justin Tokely,Speaker of the National Assembly of Madagascar and Razafinarivo Augustin,Deputy Speaker met with the delegation.The delegation exchanged views with Rafidi,Director of the Madagascar Economic Development Bureau as well as leaders of local NGOs on Belt and Road cooperation and peopleto-people exchanges.展开更多
Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid...Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid topological fluctuations due to mission complexity and unpredictable environmental states.This limitation hinders timely information sharing and insightful path decisions for UAVs,resulting in inefficient or even failed collaborative search.Aiming at this issue,this paper proposes a multi-UAV cooperative search strategy by developing a real-time trajectory decision that incorporates autonomous connectivity to reinforce multi-UAV collaboration and achieve search acceleration in uncertain search environments.Specifically,an autonomous connectivity strategy based on node cognitive information and network states is introduced to enable effective message transmission and adapt to the dynamic network environment.Based on the fused information,we formalize the trajectory planning as a multiobjective optimization problem by jointly considering search performance and UAV energy harnessing.A multi-agent deep reinforcement learning based algorithm is proposed to solve it,where the reward-guided real-time path is determined to achieve an energyefficient search.Finally,extensive experimental results show that the proposed algorithm outperforms existing works in terms of average search rate and coverage rate with reduced energy consumption under uncertain search environments.展开更多
On December 19,2015,construction equipment including cranes and excavators stood at attention at Thailand’s Chiang Rak Noi Station.Then Chinese State Councilor Wang Yong and Thai Deputy Prime Minister Prajin Juntong ...On December 19,2015,construction equipment including cranes and excavators stood at attention at Thailand’s Chiang Rak Noi Station.Then Chinese State Councilor Wang Yong and Thai Deputy Prime Minister Prajin Juntong lit the ceremonial cable,officially launching the China-Thailand Railway project.The 845-kilometer high-speed line will be Thailand’s first.It will stretch from Bangkok to Nong Khai on the Thai-Lao border and,once completed,will connect with the operational China-Laos Railway,enabling direct travel from Bangkok to Kunming,capital of southwest China’s Yunnan Province.Currently,most of Thailand’s rail infrastructure dates back more than a century.Most trains run at speeds below 50 km/h,using outdated carriages with safety risks.The China-Thailand Railway is expected to significantly improve this situation.展开更多
The relationship between landslides,land use,and sediment connectivity is not only a critical interdisciplinary topic,but also remains a challenging issue in assessing dynamic landslide susceptibility within reservoir...The relationship between landslides,land use,and sediment connectivity is not only a critical interdisciplinary topic,but also remains a challenging issue in assessing dynamic landslide susceptibility within reservoir areas.To explore the interactions among landslide,land use changes,and sediment dynamic,this study took Zigui Basin,the head area of the Three Gorges Reservoir,as the study area to examine this triadic relationship by single-factor detection and interactive detection.Here,we utilized Dynamic Attitude(DA)analysis to quantify land use changes and applied the Index of Connectivity(IC)to assess sediment connectivity evolution from 2018 to 2023.A multi-temporal analysis using the Landslide Susceptibility Index(LSI)was conducted to evaluate the degree of transformation in the three objects and the influence of these changes on the landslide susceptibility.According to the spatial analyst and statistics tools in ArcGIS,the results reveal that most of the landslides distributed in areas with high land use dynamic attitude,such as cultivated land transfers to forestland or garden plot,and the garden plot continuously increased across the study period with largest variation of 5%and an increment of 1.9%.Furthermore,linkage between land use and sediment transport can be effectively quantified by IC,and the resulting map indicated that garden plot increased,and catchment channel characteristics had a greater influence on the IC value than differences in vegetation cover.A comprehensive evaluation of the differences among the susceptibility maps reveals that the very high susceptibility classes are predominantly influenced by enhanced connectivity,whereas land use change has a greater effect on medium-low susceptibility region than that of sediment evolution.That is,both changes of land use and connectivity have positively correlated with landslide activity,but they exhibit differential influences on landslides susceptibility.展开更多
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for proce...The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.展开更多
Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig...Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.展开更多
In 2024,the Center for Cambodian Studies at Beijing Foreign Studies University(BFSU)and the Institute for International Studies and Public Policy at the Royal University of Phnom Phen(RUPP)conducted a survey on how yo...In 2024,the Center for Cambodian Studies at Beijing Foreign Studies University(BFSU)and the Institute for International Studies and Public Policy at the Royal University of Phnom Phen(RUPP)conducted a survey on how young Cambodians view Cambodia’s people-to-people ties with China.Echoing the celebrations of 2024 Cambodia-China People-to-People Exchange Year,the two institutions sampled different groups of people ranging from students to civil society representatives,taking a deep dive into their views on intercultural connections between Cambodia and China.This survey collected 2,200 valid responses,an almost 6.5-fold increase compared to a previous survey done by BFSU and RUPP in 2021.展开更多
As the core area of the China-Singapore(Chongqing)Connectivity Initiative(CCI),Chongqing Liangjiang New Area has continuously promoted cooperation with Singapore over the last decade in the key areas of financial serv...As the core area of the China-Singapore(Chongqing)Connectivity Initiative(CCI),Chongqing Liangjiang New Area has continuously promoted cooperation with Singapore over the last decade in the key areas of financial services,aviation,transportation and logistics,and information and communication,which has contributed to the efforts to build a leading inland opening-up and international cooperation zone in Chongqing.So far,the New Area has signed contracts on 90 cooperation projects with Singapore,accounting for 26 percent of the city’s total,which are worth more than US$11.15 billion,43 percent of the city’s total.展开更多
BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i...BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.展开更多
Enhancing the spatio-temporal connectivity of dynamic landscapes is crucial for species to adapt to climate change.However,the spatio-temporal connectivity network approach considering climate change and species movem...Enhancing the spatio-temporal connectivity of dynamic landscapes is crucial for species to adapt to climate change.However,the spatio-temporal connectivity network approach considering climate change and species movement is often overlooked.Taking Tibetan wild ass on the Qinghai-Xizang Plateau as an example,we simulated species distribution under current(2019)and future scenarios(2100),constructed spatio-temporal connectivity networks,and assessed the spatio-temporal connectivity.The results show that under the current,SSP2–4.5 and SSP3–7.0 scenarios,suitable habitats for the Tibetan wild ass account for 21.11%,21.34%,and 20.95%of the total area,respectively,with increased fragmentation projected by 2100.78.35%of the habitats which are predicted to be suitable under current conditions will remain suitable in the future,which can be regarded as stable climate refuges.With the increase in future emission intensity,the percentage of auxiliary connectivity corridors increases from 27.65%to 33.57%.This indicates that more patches will function as temporary refuges and the auxiliary connectivity corridors will gradually weaken the dominance of direct connectivity corridors.Under different SSP-RCP scenarios,the internal spatio-temporal connectivity is always higher than direct connectivity and auxiliary connectivity,accounting for 42%–43%.Compared with the spatio-temporal perspective,the purely spatial perspective overestimates network connectivity by about 28%considering all current and future patches,and underestimates network connectivity by 16%–21%when only considering all current or future patches.In this study,a new approach of spatio-temporal connectivity network is proposed to bridge climate refuges,which contributes to the long-term effectiveness of conservation networks for species’adaptation to climate change.展开更多
Infrastructure and energy are two important areas for African countries to achieve sustainable development,as well as are among the priorities in the African Union’s Agenda 2063,the continent’s ambitious development...Infrastructure and energy are two important areas for African countries to achieve sustainable development,as well as are among the priorities in the African Union’s Agenda 2063,the continent’s ambitious development blueprint.In February,Lerato Mataboge was elected as the African Union Commissioner for Infrastructure and Energy.She is a global policy and trade and investment facilitation expert and was the deputy director general in the South African Department of Trade,Industry and Competition when she was elected.展开更多
基金supported by the Guangzhou Municipal Key Discipline in Medicine(2021-2023)the Guangzhou High-level Clinical Key Specialty,the Guangzhou Research-oriented Hospital,the Innovative Clinical Technique of Guangzhou(2024-2026)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(grant number 2022A1515011567,2020A1515110565)the Guangzhou Science,Technology Planning Project(grant number 202201010714,202103000032)the National Natural Science Foundation of China(grant number 82471546)the Guangdong College Students Innovation and Entrepreneurship Training Project(grant number S202310570038)the Guangzhou Health Science and Technology Project(grant number 20231A010038)the Guangzhou Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Technology Project(grant number:20232A010013)the Science and Technology Plan Project of Guangzhou(2023A03J0842).
文摘Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.
基金Under the auspices of Key Program of the National Natural Science Foundation of China(No.U2006215,U1806218)the National Key R&D Program of China(No.2017YFC0505902)。
文摘Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.
基金the National Natural Science Foundation of China(Grant No.52374051)the Joint Fund for Enterprise Innovation and Development of NSFC(Grant No.U24B2037).
文摘During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.
文摘From April 14 to 18,Chinese President Xi Jinping made state visits to Vietnam,Malaysia,and Cambodia.This tour coincided with global upheaval caused by“reciprocal tariffs”imposed by U.S.President Donald Trump,which turned global eyes towards China and Southeast Asian nations to see how they would strengthen cooperation and respond to the“Trump effect.”
基金supported by the Natural Science Foundation of Shandong Province,ZR2024MH072Open Project of Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province,Xiangnan University,YXZN2022002+2 种基金Projects of Xiamen Scientific and Technological Plan,3502Z20199096 and 3502Z20209220the National Natural Science Foundation of China,61802330the Yantai City Science and Technology Innovation Development Plan,2023XDRH006.
文摘Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.
文摘On April 6th,the"Silk Road People-to-People Connectivity"China-Cambodia Traditional Instrument Concert was successfully held in Phnom Penh.The event was attended by Li Ji,Cultural Counsellor of the Chinese Embassy in Cambodia,officials from Ministry of Culture and Fine Arts of Cambodia and Ministry of Commerce of Cambodia,along with vips from various sectors.
文摘On May 10,2025,the"Silk Road People-to-People Connectivity"China-Africa Friendship for International Volunteer Service was held at the Hope Primary School in Mathare Slum,Nairobi,Kenya.The event was co-organised by China NGO Network for International Exchanges(CNIE)and the Dream Building Service Association.Li Jun,Vice-President of CNIE delivered opening remarks at the event.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203).
文摘AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.
基金the National Key Research and Development Program of China,No.2021ZD0202000the National Natural Science Foundation of China,No.82101612 and No.82471570+1 种基金the Natural Science Foundation of Hunan Province,China,No.2022JJ40692the Science and Technology Innovation Program of Hunan Province,No.2021RC2040 and No.2024RC3056.
文摘BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective.
文摘At the invitation of the Madagascar-China Friendship Group of the National Assembly of Madagascar,Li Jun,former Vice-Minister of the International Department of the CPC Central Committee and Vice-President of CNIE,led a sixmember delegation to visit Madagascar from May 11th to 14th,2025.During the delegation's visit,Justin Tokely,Speaker of the National Assembly of Madagascar and Razafinarivo Augustin,Deputy Speaker met with the delegation.The delegation exchanged views with Rafidi,Director of the Madagascar Economic Development Bureau as well as leaders of local NGOs on Belt and Road cooperation and peopleto-people exchanges.
基金supported by National Natural Science Foundation of China(No.62202449 and No.62472410)National Key Research and Development Program of China(2021YFB2900102)。
文摘Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid topological fluctuations due to mission complexity and unpredictable environmental states.This limitation hinders timely information sharing and insightful path decisions for UAVs,resulting in inefficient or even failed collaborative search.Aiming at this issue,this paper proposes a multi-UAV cooperative search strategy by developing a real-time trajectory decision that incorporates autonomous connectivity to reinforce multi-UAV collaboration and achieve search acceleration in uncertain search environments.Specifically,an autonomous connectivity strategy based on node cognitive information and network states is introduced to enable effective message transmission and adapt to the dynamic network environment.Based on the fused information,we formalize the trajectory planning as a multiobjective optimization problem by jointly considering search performance and UAV energy harnessing.A multi-agent deep reinforcement learning based algorithm is proposed to solve it,where the reward-guided real-time path is determined to achieve an energyefficient search.Finally,extensive experimental results show that the proposed algorithm outperforms existing works in terms of average search rate and coverage rate with reduced energy consumption under uncertain search environments.
文摘On December 19,2015,construction equipment including cranes and excavators stood at attention at Thailand’s Chiang Rak Noi Station.Then Chinese State Councilor Wang Yong and Thai Deputy Prime Minister Prajin Juntong lit the ceremonial cable,officially launching the China-Thailand Railway project.The 845-kilometer high-speed line will be Thailand’s first.It will stretch from Bangkok to Nong Khai on the Thai-Lao border and,once completed,will connect with the operational China-Laos Railway,enabling direct travel from Bangkok to Kunming,capital of southwest China’s Yunnan Province.Currently,most of Thailand’s rail infrastructure dates back more than a century.Most trains run at speeds below 50 km/h,using outdated carriages with safety risks.The China-Thailand Railway is expected to significantly improve this situation.
基金supported by the National Key R&D Program of China(Grant No.2024YFC3012702)National Natural Science Foundation of China(Grant No.42371014)+2 种基金Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials Open Research Program(Grant No.2022SNJ11)National Natural Science Foundation of China(Grant No.42201094)Hubei Key Laboratory of Disaster Prevention and Mitigation(China Three Gorges University)Open Research Program(Grant No.2022KJZ12)。
文摘The relationship between landslides,land use,and sediment connectivity is not only a critical interdisciplinary topic,but also remains a challenging issue in assessing dynamic landslide susceptibility within reservoir areas.To explore the interactions among landslide,land use changes,and sediment dynamic,this study took Zigui Basin,the head area of the Three Gorges Reservoir,as the study area to examine this triadic relationship by single-factor detection and interactive detection.Here,we utilized Dynamic Attitude(DA)analysis to quantify land use changes and applied the Index of Connectivity(IC)to assess sediment connectivity evolution from 2018 to 2023.A multi-temporal analysis using the Landslide Susceptibility Index(LSI)was conducted to evaluate the degree of transformation in the three objects and the influence of these changes on the landslide susceptibility.According to the spatial analyst and statistics tools in ArcGIS,the results reveal that most of the landslides distributed in areas with high land use dynamic attitude,such as cultivated land transfers to forestland or garden plot,and the garden plot continuously increased across the study period with largest variation of 5%and an increment of 1.9%.Furthermore,linkage between land use and sediment transport can be effectively quantified by IC,and the resulting map indicated that garden plot increased,and catchment channel characteristics had a greater influence on the IC value than differences in vegetation cover.A comprehensive evaluation of the differences among the susceptibility maps reveals that the very high susceptibility classes are predominantly influenced by enhanced connectivity,whereas land use change has a greater effect on medium-low susceptibility region than that of sediment evolution.That is,both changes of land use and connectivity have positively correlated with landslide activity,but they exhibit differential influences on landslides susceptibility.
基金supported by the National Key Research and Development Program of China(2023YFF1203502)the National Natural Science Foundation of China(62171300,62301343,and 62394314)+1 种基金the Project of Cultivation for Young Top-Notch Talents of Beijing Municipal Institutions(BPHR202203109)the Capital Medical University Research and Development Fund(PYZ22027).
文摘The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
基金supported by the National Natural Science Foundation project“Micro-Scale Effect of Oil-Gas Flow and the Mechanism of Enhancing Shale Oil Recovery by Natural Gas Injection”(No.52074317)。
文摘Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.
文摘In 2024,the Center for Cambodian Studies at Beijing Foreign Studies University(BFSU)and the Institute for International Studies and Public Policy at the Royal University of Phnom Phen(RUPP)conducted a survey on how young Cambodians view Cambodia’s people-to-people ties with China.Echoing the celebrations of 2024 Cambodia-China People-to-People Exchange Year,the two institutions sampled different groups of people ranging from students to civil society representatives,taking a deep dive into their views on intercultural connections between Cambodia and China.This survey collected 2,200 valid responses,an almost 6.5-fold increase compared to a previous survey done by BFSU and RUPP in 2021.
文摘As the core area of the China-Singapore(Chongqing)Connectivity Initiative(CCI),Chongqing Liangjiang New Area has continuously promoted cooperation with Singapore over the last decade in the key areas of financial services,aviation,transportation and logistics,and information and communication,which has contributed to the efforts to build a leading inland opening-up and international cooperation zone in Chongqing.So far,the New Area has signed contracts on 90 cooperation projects with Singapore,accounting for 26 percent of the city’s total,which are worth more than US$11.15 billion,43 percent of the city’s total.
基金Supported by the Pharmaceutical Science and Technology Project of Zhejiang Province,No.2023RC266the Natural Science Foundation of Ningbo,No.202003N4266.
文摘BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFF1303201).
文摘Enhancing the spatio-temporal connectivity of dynamic landscapes is crucial for species to adapt to climate change.However,the spatio-temporal connectivity network approach considering climate change and species movement is often overlooked.Taking Tibetan wild ass on the Qinghai-Xizang Plateau as an example,we simulated species distribution under current(2019)and future scenarios(2100),constructed spatio-temporal connectivity networks,and assessed the spatio-temporal connectivity.The results show that under the current,SSP2–4.5 and SSP3–7.0 scenarios,suitable habitats for the Tibetan wild ass account for 21.11%,21.34%,and 20.95%of the total area,respectively,with increased fragmentation projected by 2100.78.35%of the habitats which are predicted to be suitable under current conditions will remain suitable in the future,which can be regarded as stable climate refuges.With the increase in future emission intensity,the percentage of auxiliary connectivity corridors increases from 27.65%to 33.57%.This indicates that more patches will function as temporary refuges and the auxiliary connectivity corridors will gradually weaken the dominance of direct connectivity corridors.Under different SSP-RCP scenarios,the internal spatio-temporal connectivity is always higher than direct connectivity and auxiliary connectivity,accounting for 42%–43%.Compared with the spatio-temporal perspective,the purely spatial perspective overestimates network connectivity by about 28%considering all current and future patches,and underestimates network connectivity by 16%–21%when only considering all current or future patches.In this study,a new approach of spatio-temporal connectivity network is proposed to bridge climate refuges,which contributes to the long-term effectiveness of conservation networks for species’adaptation to climate change.
文摘Infrastructure and energy are two important areas for African countries to achieve sustainable development,as well as are among the priorities in the African Union’s Agenda 2063,the continent’s ambitious development blueprint.In February,Lerato Mataboge was elected as the African Union Commissioner for Infrastructure and Energy.She is a global policy and trade and investment facilitation expert and was the deputy director general in the South African Department of Trade,Industry and Competition when she was elected.