Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term La...Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.展开更多
Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a...Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.展开更多
Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modula...Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of...[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.展开更多
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
The philosophical concept of one bond connecting the world is an established scientific and economic phenomenon today.The global industrial and supply chains are symbols of that universal link of fraternity,cooperatio...The philosophical concept of one bond connecting the world is an established scientific and economic phenomenon today.The global industrial and supply chains are symbols of that universal link of fraternity,cooperation and globalization.Despite a few major economies still trying to push forward a decoupling agenda and favoring a“small yard,high fence”strategy,globalization and cooperation remain a global trend.展开更多
During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face ...During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.展开更多
Yuzhong District is where the city of Chongqing first originated.It opened a window to the world for the locals while serving as the city’s lounge receiving visitors from around the globe.Yuzhong is now a central hub...Yuzhong District is where the city of Chongqing first originated.It opened a window to the world for the locals while serving as the city’s lounge receiving visitors from around the globe.Yuzhong is now a central hub for implementing the China-Singapore(Chongqing)Demonstration Initiative on Strategic Connectivity,also known as China-Singapore(Chongqing)Connectivity Initiative(CCI),striving to leverage the important role of the CCI platform to promote high-level and innovation-driven opening-up from a high starting point.With focus on developing modern connectivity and the service industry,the district government has prioritized key areas such as commerce,finance,information,communications,healthcare,education.展开更多
Now at the end of his second year of medical school,Michael Kofi Esson spends his days on science.To make sense of difficult science,he often turns to art.When he's struggling to understand the immune system or a ...Now at the end of his second year of medical school,Michael Kofi Esson spends his days on science.To make sense of difficult science,he often turns to art.When he's struggling to understand the immune system or a rare disease,music and poetry serve as an anchor.“They help calm me down and actively choose what to focus on,”says Esson.He also thinks his brain is better at absorbing all that science because of the years he spent playing the trumpet(小号).“There has to be some kind of greater connectivity that art imparts to the brain,”Esson says.That idea has support from a growing number of scientific studies.展开更多
With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.Howev...With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.展开更多
Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network con...Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.展开更多
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road...Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.展开更多
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph...We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.展开更多
With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminati...With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminating the need to provide their credentials repeatedly.However,this convenience raises concerns about user security and privacy.The increasing reliance on SSO and its potential risks make it imperative to comprehensively review the various SSO security and privacy threats,identify gaps in existing systems,and explore effective mitigation solutions.This need motivated the first systematic literature review(SLR)of SSO security and privacy,conducted in this paper.The SLR is performed based on rigorous structured research methodology with specific inclusion/exclusion criteria and focuses specifically on the Web environment.Furthermore,it encompasses a meticulous examination and thematic synthesis of 88 relevant publications selected out of 2315 journal articles and conference/proceeding papers published between 2017 and 2024 from reputable academic databases.The SLR highlights critical security and privacy threats relating to SSO systems,reveals significant gaps in existing countermeasures,and emphasizes the need for more comprehensive protection mechanisms.The findings of this SLR will serve as an invaluable resource for scientists and developers interested in enhancing the security and privacy preservation of SSO and designing more efficient and robust SSO systems,thus contributing to the development of the authentication technologies field.展开更多
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
基金Under the auspices of Key Program of the National Natural Science Foundation of China(No.U2006215,U1806218)the National Key R&D Program of China(No.2017YFC0505902)。
文摘Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.
基金supported by ANID Fondecyt Iniciacion 11180540(to FJB)ANID PAI 77180077(to FJB)+2 种基金UNAB DI-02-22/REG(to FJB)Exploración-ANID 13220203(to FJB)ANID-MILENIO(NCN2023_23,to FJB)。
文摘Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.
基金supported by grants from the Zhejiang Provincial Natural Science Foundation(LGJ22H180001)Zhejiang Medical and Health Science and Technology Project(2021KY249)the National Key R&D Program of China(2017YFC1310000).
文摘Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory (Grant No.220100011)+1 种基金supported by the International Space Science Institute–Beijing(ISSI-BJ) project“The Electromagnetic Data Validation and Scientific Application Research based on CSES Satellite”and ISSI/ISSI-BJ project,“Multi-Scale Magnetosphere–Ionosphere–Thermosphere Interaction.”
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
文摘[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.
文摘The philosophical concept of one bond connecting the world is an established scientific and economic phenomenon today.The global industrial and supply chains are symbols of that universal link of fraternity,cooperation and globalization.Despite a few major economies still trying to push forward a decoupling agenda and favoring a“small yard,high fence”strategy,globalization and cooperation remain a global trend.
基金the National Natural Science Foundation of China(Grant No.52374051)the Joint Fund for Enterprise Innovation and Development of NSFC(Grant No.U24B2037).
文摘During oilfield development,a comprehensive model for assessing inter-well connectivity and connected volume within reservoirs is crucial.Traditional capacitance(TC)models,widely used in inter-well data analysis,face challenges when dealing with rapidly changing reservoir conditions over time.Additionally,TC models struggle with complex,random noise primarily caused by measurement errors in production and injection rates.To address these challenges,this study introduces a dynamic capacitance(SV-DC)model based on state variables.By integrating the extended Kalman filter(EKF)algorithm,the SV-DC model provides more flexible predictions of inter-well connectivity and time-lag efficiency compared to the TC model.The robustness of the SV-DC model is verified by comparing relative errors between preset and calculated values through Monte Carlo simulations.Sensitivity analysis was performed to compare the model performance with the benchmark,using the Qinhuangdao Oilfield as a case study.The results show that the SV-DC model accurately predicts water breakthrough times.Increases in the liquid production index and water cut in two typical wells indicate the development time of ineffective circulation channels,further confirming the accuracy and reliability of the model.The SV-DC model offers significant advantages in addressing complex,dynamic oilfield production scenarios and serves as a valuable tool for the efficient and precise planning and management of future oilfield developments.
文摘Yuzhong District is where the city of Chongqing first originated.It opened a window to the world for the locals while serving as the city’s lounge receiving visitors from around the globe.Yuzhong is now a central hub for implementing the China-Singapore(Chongqing)Demonstration Initiative on Strategic Connectivity,also known as China-Singapore(Chongqing)Connectivity Initiative(CCI),striving to leverage the important role of the CCI platform to promote high-level and innovation-driven opening-up from a high starting point.With focus on developing modern connectivity and the service industry,the district government has prioritized key areas such as commerce,finance,information,communications,healthcare,education.
文摘Now at the end of his second year of medical school,Michael Kofi Esson spends his days on science.To make sense of difficult science,he often turns to art.When he's struggling to understand the immune system or a rare disease,music and poetry serve as an anchor.“They help calm me down and actively choose what to focus on,”says Esson.He also thinks his brain is better at absorbing all that science because of the years he spent playing the trumpet(小号).“There has to be some kind of greater connectivity that art imparts to the brain,”Esson says.That idea has support from a growing number of scientific studies.
基金supported by Prevention the Fundamental Research Funds for the Central Universities“Study on the general joint of prefabricated high-pier columns”(ZY20230218)Science and Technology Innovation Program for Postgraduate students in IDP subsidized by Fundamental Research Funds for the Central Universities“Research on seismic performance of prefabricated bridge piers with embedded separated steel connections”(ZY20250316).
文摘With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.
基金supported by the Guangzhou Municipal Key Discipline in Medicine(2021-2023)the Guangzhou High-level Clinical Key Specialty,the Guangzhou Research-oriented Hospital,the Innovative Clinical Technique of Guangzhou(2024-2026)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(grant number 2022A1515011567,2020A1515110565)the Guangzhou Science,Technology Planning Project(grant number 202201010714,202103000032)the National Natural Science Foundation of China(grant number 82471546)the Guangdong College Students Innovation and Entrepreneurship Training Project(grant number S202310570038)the Guangzhou Health Science and Technology Project(grant number 20231A010038)the Guangzhou Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Technology Project(grant number:20232A010013)the Science and Technology Plan Project of Guangzhou(2023A03J0842).
文摘Background The heterogeneity of depression limits the treatment outcomes of intermittent theta burst stimulation(iTBS)and hinders the identification of predictive factors.This study investigated functional network connectivity and predictors of iTBS treatment outcomes in adolescents and young adults with depression.Aim This study aimed to identify default mode network(DMN)-based connectivity patterns associated with varying iTBS treatment outcomes in depression.Methods Data from a randomised controlled trial of iTBS in depression(n=82)were analysed using a data-driven approach to classify homogeneous subgroups based on the DMN.Connectivity subgroups were compared on depressive symptoms and cognitive function at pretreatment and post-treatment.Furthermore,the predictive significance of baseline inflammatory cytokines on post-treatment outcomes was evaluated.Results Two distinct subgroups were identified.Subgroup 1 exhibited high heterogeneity and greater centrality in the posterior cingulate cortex and retrosplenial cortex,while subgroup 2 showed more homogeneous connectivity patterns and greater centrality in the temporoparietal junction and posterior inferior parietal lobule.No main effect for subgroup,treatment or subgroup×treatment interaction was revealed in the improvement of depressive symptoms.A significant subgroup×treatment interaction related to symbol coding improvement was detected(F=5.22,p=0.026).Within subgroup 1,the active group showed significantly greater improvement in symbol coding compared with the sham group(t=2.30,p=0.028),while baseline levels of interleukin-6 and C-reactive protein emerged as significant indicators for predicting improvements in symbolic coding(R2=0.35,RMSE(root-mean-square error)=5.72,p=0.013).Subgroup 2 showed no significant findings in terms of cognitive improvement or inflammatory cytokines predictions.
文摘Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province (No.KJ2021A0479)the Science Research Program of Anhui University of Finance and Economics (No.ACKYC22082)。
文摘We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.
文摘With the proliferation of online services and applications,adopting Single Sign-On(SSO)mechanisms has become increasingly prevalent.SSO enables users to authenticate once and gain access to multiple services,eliminating the need to provide their credentials repeatedly.However,this convenience raises concerns about user security and privacy.The increasing reliance on SSO and its potential risks make it imperative to comprehensively review the various SSO security and privacy threats,identify gaps in existing systems,and explore effective mitigation solutions.This need motivated the first systematic literature review(SLR)of SSO security and privacy,conducted in this paper.The SLR is performed based on rigorous structured research methodology with specific inclusion/exclusion criteria and focuses specifically on the Web environment.Furthermore,it encompasses a meticulous examination and thematic synthesis of 88 relevant publications selected out of 2315 journal articles and conference/proceeding papers published between 2017 and 2024 from reputable academic databases.The SLR highlights critical security and privacy threats relating to SSO systems,reveals significant gaps in existing countermeasures,and emphasizes the need for more comprehensive protection mechanisms.The findings of this SLR will serve as an invaluable resource for scientists and developers interested in enhancing the security and privacy preservation of SSO and designing more efficient and robust SSO systems,thus contributing to the development of the authentication technologies field.