In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It ha...The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It has been suggested that the size of the brain(brain reserve) and the extent of neural connections acquired through life(neural reserve) set a threshold beyond which noticeable impairments occur.In contrast,cognitive reserve refers to the brain's ability to adapt and reo rganize stru cturally and functionally to resist damage and maintain function,including neural reserve and brain maintenance,resilience,and compensation(Verkhratsky and Zorec,2024).展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across m...Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across multiple conditions and its underlying mechanisms is the subject of ongoing investigation.This review synthesized current evidence to explore the association between NRH and psychiatric disorders from epidemiological,genetic,and neurobiological perspectives.We systematically identified and appraised relevant literature investigating NRH prevalence in psychiatric populations and potential explanatory mechanisms.Epidemiological evidence indicates an elevated prevalence of NRH,particularly within neurodevelopmental disorders.Potential contributing mechanisms identified include early developmental disruptions,shared genetic predispositions,and atypical patterns of brain lateralization.While the association between NRH and psychiatric conditions,especially neurodevelopmental disorders,is evident,the causal pathways and relative contributions of identified mechanisms are complex and debated.This review highlighted key areas requiring further research to elucidate these relationships.展开更多
Traumatic axonal lesions of peripheral nerves disrupt neuronal connections with their targets,resulting in the loss of motor and sensory functions.Despite the peripheral nervous system’s capacity for axonal regrowth,...Traumatic axonal lesions of peripheral nerves disrupt neuronal connections with their targets,resulting in the loss of motor and sensory functions.Despite the peripheral nervous system’s capacity for axonal regrowth,this may lead to permanent impairements resulting in a loss of quality of life and a high socioeconomic burden.展开更多
Emerging contaminants(ECs)have raised global concern due to their adverse effect on ecosystems and human health.However,the occurrence and transport of ECs in stormwater remain unclear.The impact of ECs from stormwate...Emerging contaminants(ECs)have raised global concern due to their adverse effect on ecosystems and human health.However,the occurrence and transport of ECs in stormwater remain unclear.The impact of ECs from stormwater on surface water quality and ecosystem health is also poorly documented.In this review,we examined the variations in EC concentrations in surface water resulting from stormwater.During the wet weather,the concentrations of most investigated ECs,e.g.,microplastics,per-and polyfluoroalkyl substances,and vehicle-related compounds,significantly increase in surface water,indicating that stormwater may be a critical source of these contaminants.Furthermore,the potential pathways of ECs from stormwater enter surface water are outlined.Studies demonstrate that surface runoff and combined sewer overflows are important pathways for ECs,with discharges comparable to or exceeding those from wastewater treatment plants.Illicit connection also plays an important part in elevated EC concentrations in surface water.Overall,our findings underscore the importance of stormwater as a source for ECs in surface waters,and urge for increased emphasis on,and reinforcement of,stormwater monitoring and control measures to minimize the transport of ECs into receiving water bodies.展开更多
In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.T...In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.展开更多
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term La...Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.展开更多
Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a...Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.展开更多
Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modula...Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of...[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.展开更多
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
文摘In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
文摘The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It has been suggested that the size of the brain(brain reserve) and the extent of neural connections acquired through life(neural reserve) set a threshold beyond which noticeable impairments occur.In contrast,cognitive reserve refers to the brain's ability to adapt and reo rganize stru cturally and functionally to resist damage and maintain function,including neural reserve and brain maintenance,resilience,and compensation(Verkhratsky and Zorec,2024).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
文摘Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across multiple conditions and its underlying mechanisms is the subject of ongoing investigation.This review synthesized current evidence to explore the association between NRH and psychiatric disorders from epidemiological,genetic,and neurobiological perspectives.We systematically identified and appraised relevant literature investigating NRH prevalence in psychiatric populations and potential explanatory mechanisms.Epidemiological evidence indicates an elevated prevalence of NRH,particularly within neurodevelopmental disorders.Potential contributing mechanisms identified include early developmental disruptions,shared genetic predispositions,and atypical patterns of brain lateralization.While the association between NRH and psychiatric conditions,especially neurodevelopmental disorders,is evident,the causal pathways and relative contributions of identified mechanisms are complex and debated.This review highlighted key areas requiring further research to elucidate these relationships.
文摘Traumatic axonal lesions of peripheral nerves disrupt neuronal connections with their targets,resulting in the loss of motor and sensory functions.Despite the peripheral nervous system’s capacity for axonal regrowth,this may lead to permanent impairements resulting in a loss of quality of life and a high socioeconomic burden.
基金supported by the National Natural Science Foundation of China(Nos.52325001 and 52170009)the National Key Research and Development Program of China(No.2021YFC3200700)the Programof Shanghai Academic Research Leader,China(No.21XD1424000).
文摘Emerging contaminants(ECs)have raised global concern due to their adverse effect on ecosystems and human health.However,the occurrence and transport of ECs in stormwater remain unclear.The impact of ECs from stormwater on surface water quality and ecosystem health is also poorly documented.In this review,we examined the variations in EC concentrations in surface water resulting from stormwater.During the wet weather,the concentrations of most investigated ECs,e.g.,microplastics,per-and polyfluoroalkyl substances,and vehicle-related compounds,significantly increase in surface water,indicating that stormwater may be a critical source of these contaminants.Furthermore,the potential pathways of ECs from stormwater enter surface water are outlined.Studies demonstrate that surface runoff and combined sewer overflows are important pathways for ECs,with discharges comparable to or exceeding those from wastewater treatment plants.Illicit connection also plays an important part in elevated EC concentrations in surface water.Overall,our findings underscore the importance of stormwater as a source for ECs in surface waters,and urge for increased emphasis on,and reinforcement of,stormwater monitoring and control measures to minimize the transport of ECs into receiving water bodies.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under the Grant No.14201621。
文摘In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
基金Under the auspices of Key Program of the National Natural Science Foundation of China(No.U2006215,U1806218)the National Key R&D Program of China(No.2017YFC0505902)。
文摘Spartina alterniflora invasions seriously threaten the structure and functions of coastal wetlands in China.In this study,the Suaeda salsa community in the Yellow River Estuary wetland was monitored using long-term Landsat satellite images acquired from 1997 to 2020 to quantify the impact of changes in hydrological connectivity induced by S.alterniflora on neighboring vegetation com-munities.The results showed that S.alterniflora rapidly expanded in the estuary area at a rate of 4.91 km^(2)/yr from 2010 to 2020.At the same time,the hydrological connectivity of the area and the distribution of S.salsa changed significantly.Small tidal creeks dominated the S.alterniflora landscape.The number of tidal creeks increased significantly,but their average length decreased and they tended to develop in a horizontal tree-like pattern.Affected by the changes in hydrological connectivity due to the S.alterniflora invasion,the area of S.salsa decreased by 41.1%,and the degree of landscape fragmentation increased from 1997 to 2020.Variations in the Largest Patch Index(LPI)indicated that the S.alterniflora landscape had become the dominant landscape type in the Yellow River Estuary.The res-ults of standard deviation ellipse(SDE)and Pearson’s correlation analyses indicated that a well-developed hydrological connectivity could promote the maintenance of the S.salsa landscape.The degradation of most S.salsa communities is caused by the influence of S.alterniflora on the morphological characteristics of the hydrological connectivity of tidal creek systems.
基金supported by ANID Fondecyt Iniciacion 11180540(to FJB)ANID PAI 77180077(to FJB)+2 种基金UNAB DI-02-22/REG(to FJB)Exploración-ANID 13220203(to FJB)ANID-MILENIO(NCN2023_23,to FJB)。
文摘Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.
基金supported by grants from the Zhejiang Provincial Natural Science Foundation(LGJ22H180001)Zhejiang Medical and Health Science and Technology Project(2021KY249)the National Key R&D Program of China(2017YFC1310000).
文摘Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory (Grant No.220100011)+1 种基金supported by the International Space Science Institute–Beijing(ISSI-BJ) project“The Electromagnetic Data Validation and Scientific Application Research based on CSES Satellite”and ISSI/ISSI-BJ project,“Multi-Scale Magnetosphere–Ionosphere–Thermosphere Interaction.”
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
文摘[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.