Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and hom...Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.展开更多
As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their join...As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.展开更多
In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetland...Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetlands within the Hastinapur Wildlife Sanctuary(HWLS)in Uttar Pradesh.Encroachment activities such as grazing,agriculture,and human settlements have fragmented and degraded critical wetland ecosystems.Additionally,irrigation projects,dam construction,and water diversion have disrupted natural water flow and availability.To assess wetland inundation in 2023,five classification techniques were employed:Random Forest(RF),Support Vector Machine(SVM),artificial neural network(ANN),Spectral Information Divergence(SID),and Maximum Likelihood Classifier(MLC).SVM emerged as the most precise method,as determined by kappa coefficient and index-based validation.Consequently,the SVM classifier was used to model wetland inundation areas from 1983 to 2023 and analyze spatiotemporal changes and fragmentation patterns.The findings revealed that the SVM clas-sifier accurately mapped 2023 wetland areas.The modeled time-series data demonstrated a 62.55%and 38.12%reduction in inundated wetland areas over the past 40 years in the pre-and post-monsoon periods,respectively.Fragmentation analysis indicated an 86.27%decrease in large core wetland areas in the pre-monsoon period,signifying severe habitat degradation.This rapid decline in wetlands within protected areas raises concerns about their ecological impacts.By linking wetland loss to global sustainability objectives,this study underscores the global urgency for strengthened wetland protection measures and highlights the need for integrating wetland conservation into broader sustainable development goals.Effective policies and adaptive management strategies are crucial for preserving these ecosystems and their vital services,which are essential for biodiversity,climate regulation,and human well-being.展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
Founded in September 2020,the International SparkLink Alliance(iSLA)now has approximately 1,200 members in diverse sectors including terminals,homes,vehicles,manufacturing,transportation,finance and healthcare.The iSL...Founded in September 2020,the International SparkLink Alliance(iSLA)now has approximately 1,200 members in diverse sectors including terminals,homes,vehicles,manufacturing,transportation,finance and healthcare.The iSLA has established a technical standards system for wireless short-range communication covering full-stack standards such as the end-to-end protocol system.展开更多
The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new compos...The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new composites emerging, it is necessary to develop new joining methods, particularly in the field of high temperature technique for joining ceramics to superalloys.展开更多
Currently,in the automotive industry,joining of the aluminum alloys with the steel is a crucial problem to be solved.Conventional joining techniques including resistance spot and gas metal arc welding are not acceptab...Currently,in the automotive industry,joining of the aluminum alloys with the steel is a crucial problem to be solved.Conventional joining techniques including resistance spot and gas metal arc welding are not acceptable for those applications due to a number of metallurgical problems.The investigation was carried out to develop the hybrid joining process combining the resistance spot welding and brazing.In this study,an attempt was made to apply hybrid process to the joining of dissimilar sheet metals,Al-Mg-Si(6000 series) alloy and low carbon steel sheet.Hybrid process(resistance spot weld/brazing) using filler metal was found to be effective to overcome the incompatibility between aluminum alloy and steel.Although hybrid joining process of Al alloy sheet and steel sheet did not produce acceptable bond strength,it was proved to have reasonable interfacial bond layer if the optimal process condition was applied.展开更多
Vaporizing foil actuator welding(VFAW) was used for joining 2024-T3 and 7075-T6 aluminum alloy sheets, and the resulting joint microstructure was analyzed. 2024/7075 aluminum alloy pairs with suitable processing param...Vaporizing foil actuator welding(VFAW) was used for joining 2024-T3 and 7075-T6 aluminum alloy sheets, and the resulting joint microstructure was analyzed. 2024/7075 aluminum alloy pairs with suitable processing parameters can be prepared by using VFAW. Dynamic preform addresses the poor formability problem of target material and advantage of VFAW on dissimilar materials in some conditions. But with standoff sheet inserting in the flyer and target, 2024/7075 welded pairs gets the better weld strength, compared with flyer preformed method. The microstructure of the circular weld area of the welded joint showed a wave interface, in which a thin melt layer formed at the center and edge parts. The crystal grains near the bonding interface were remarkably elongated and refined. Therefore, the joining of the 2024/7075 pairs was facilitated through plastic forming and melting.展开更多
In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler meta...In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler metals, namely ER308L, ER309L, ER316L and ER310. Microstructure characteristics and mechanical properties of the weldments were studied using optical and scanning electron microscopy, ferrit-ometry, hardness, tensile and impact tests. The ferrite number (_N-~) of the weldments made by different electrodes varies between 0.5 and 9.5. It was found that the increase in amount of delta ferrite in the microstructure of the weld metals, causes the decrease of the impact toughness of the weldments. It seems that using ER309L and ER316L electrodes can provide a good combination between the mechanical and metallurgical properties of the joint in AISI 304L/St37 dissimilar welding.展开更多
Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-sl...Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device.展开更多
The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by m...The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.展开更多
In this study, it was reported a novel approach for joining Cf/A1 composites and TiA1 intermetallic by self- propagating high-temperature synthesis (SHS). Mixed powders of 14A1-2Ni-3CuO were used as the SHS inter- l...In this study, it was reported a novel approach for joining Cf/A1 composites and TiA1 intermetallic by self- propagating high-temperature synthesis (SHS). Mixed powders of 14A1-2Ni-3CuO were used as the SHS inter- layer, and differential thermal analysis test of A1-Ni-CuO interlayer was conducted to analyze the exothermic char- acteristic. Sound joint was got by SHS joining under the conditions of 600 ℃, 30 min, and 5 MPa. The joint was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffrac- tion (XRD). TiA13 and NiA13 are, respectively, formed in the TiA1/interlayer and Cf/A1/interlayer interfaces. Reac- tion products of Ni2Al3, NiAl3, A1203, and Cu were observed in the interlayer. And the formation mechanism of SHS joining was investigated.展开更多
Electron beam surfi-sculpt is a new metal surface processing technology,which is widely used in the areas of materials surface treatment,composite materials manufacturing,and so on.In this paper,comeld technology,whic...Electron beam surfi-sculpt is a new metal surface processing technology,which is widely used in the areas of materials surface treatment,composite materials manufacturing,and so on.In this paper,comeld technology,which was an application technology of electron beam surfi-sculpt during composite materials area,was introduced.And tensile experiments results and failure forms of Ti6Al4V/Carbon fibre single step joints were compared with different joining methods,such as slick embedding,adhesive bonding,riveting and comeld.It was found that comeld joint had more advantage of tensile property than other joining methods.At the same time,tensile process of comeld joint was analyzed with numerical simulation,and key factors of protrusions influenced tensile property were obtained,which was of importance to structure design and joint property improvement.展开更多
The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of...The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.展开更多
A labeling of a graph G is a bijection from E(G) to the set {1,2,…,|E (G)| }.A labeling is antimagic if for any distinct vertices x and y,the sum of the labels on edges incident to x is different from the sum o...A labeling of a graph G is a bijection from E(G) to the set {1,2,…,|E (G)| }.A labeling is antimagic if for any distinct vertices x and y,the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y.We say that a graph is antimagic if it has an antimagic labeling.Hartsfield and Ringel conjectured in 1990 that every graph other than 2 K is antimagic.In this paper,we show that the antimagic conjecture is false for the case of disconnected graphs.Furthermore,we find some classes of disconnected graphs that are antimagic and some classes of graphs whose complement are disconnected are antimagic.展开更多
Microwave joining is a rapid developmental new technique in recent years. This paper introduces a new microwave joining equipment which was made by our lab, succeeds in alumina ceramic - hydroxylapatite bioceramic jo...Microwave joining is a rapid developmental new technique in recent years. This paper introduces a new microwave joining equipment which was made by our lab, succeeds in alumina ceramic - hydroxylapatite bioceramic join in the equipment, and analyzes the join situation of join boundary by using scanning electron microscope (SEM), this paper analyzes the mechanism of microwave joining also. (Author abstract) 4 Refs.展开更多
基金supported by the National Natural Science Foundation of China(32372116)to Yan He.
文摘Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.
基金Science and Technology Planning Project of Zunyi City of China(Project No.:Zun Shi Ke He HZ Zi[2022]121)College Students’Innovation and Entrepreneurship Training Program(Project No.:202310664031)+1 种基金Guizhou Provincial First-Class Undergraduate Major“Civil Engineering”(Project No.:Qian Jiao Han[2022]No.61)Guizhou Provincial First-Class Course Construction Project(Project No.:2022JKXX0165,2024JKXN0064)。
文摘As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.
文摘In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金support through the“Trans-Disciplinary Research”Grant(No.R/Dev/IoE/TDRProjects/2023-24/61658),which played a crucial role in enabling this research endeavor.
文摘Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetlands within the Hastinapur Wildlife Sanctuary(HWLS)in Uttar Pradesh.Encroachment activities such as grazing,agriculture,and human settlements have fragmented and degraded critical wetland ecosystems.Additionally,irrigation projects,dam construction,and water diversion have disrupted natural water flow and availability.To assess wetland inundation in 2023,five classification techniques were employed:Random Forest(RF),Support Vector Machine(SVM),artificial neural network(ANN),Spectral Information Divergence(SID),and Maximum Likelihood Classifier(MLC).SVM emerged as the most precise method,as determined by kappa coefficient and index-based validation.Consequently,the SVM classifier was used to model wetland inundation areas from 1983 to 2023 and analyze spatiotemporal changes and fragmentation patterns.The findings revealed that the SVM clas-sifier accurately mapped 2023 wetland areas.The modeled time-series data demonstrated a 62.55%and 38.12%reduction in inundated wetland areas over the past 40 years in the pre-and post-monsoon periods,respectively.Fragmentation analysis indicated an 86.27%decrease in large core wetland areas in the pre-monsoon period,signifying severe habitat degradation.This rapid decline in wetlands within protected areas raises concerns about their ecological impacts.By linking wetland loss to global sustainability objectives,this study underscores the global urgency for strengthened wetland protection measures and highlights the need for integrating wetland conservation into broader sustainable development goals.Effective policies and adaptive management strategies are crucial for preserving these ecosystems and their vital services,which are essential for biodiversity,climate regulation,and human well-being.
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
文摘Founded in September 2020,the International SparkLink Alliance(iSLA)now has approximately 1,200 members in diverse sectors including terminals,homes,vehicles,manufacturing,transportation,finance and healthcare.The iSLA has established a technical standards system for wireless short-range communication covering full-stack standards such as the end-to-end protocol system.
文摘The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new composites emerging, it is necessary to develop new joining methods, particularly in the field of high temperature technique for joining ceramics to superalloys.
文摘Currently,in the automotive industry,joining of the aluminum alloys with the steel is a crucial problem to be solved.Conventional joining techniques including resistance spot and gas metal arc welding are not acceptable for those applications due to a number of metallurgical problems.The investigation was carried out to develop the hybrid joining process combining the resistance spot welding and brazing.In this study,an attempt was made to apply hybrid process to the joining of dissimilar sheet metals,Al-Mg-Si(6000 series) alloy and low carbon steel sheet.Hybrid process(resistance spot weld/brazing) using filler metal was found to be effective to overcome the incompatibility between aluminum alloy and steel.Although hybrid joining process of Al alloy sheet and steel sheet did not produce acceptable bond strength,it was proved to have reasonable interfacial bond layer if the optimal process condition was applied.
基金Funded by the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No.31815008)the National Natural Science Foundation of China(No.U1564202,NO.51205298)111 Project(No.B17034)
文摘Vaporizing foil actuator welding(VFAW) was used for joining 2024-T3 and 7075-T6 aluminum alloy sheets, and the resulting joint microstructure was analyzed. 2024/7075 aluminum alloy pairs with suitable processing parameters can be prepared by using VFAW. Dynamic preform addresses the poor formability problem of target material and advantage of VFAW on dissimilar materials in some conditions. But with standoff sheet inserting in the flyer and target, 2024/7075 welded pairs gets the better weld strength, compared with flyer preformed method. The microstructure of the circular weld area of the welded joint showed a wave interface, in which a thin melt layer formed at the center and edge parts. The crystal grains near the bonding interface were remarkably elongated and refined. Therefore, the joining of the 2024/7075 pairs was facilitated through plastic forming and melting.
文摘In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler metals, namely ER308L, ER309L, ER316L and ER310. Microstructure characteristics and mechanical properties of the weldments were studied using optical and scanning electron microscopy, ferrit-ometry, hardness, tensile and impact tests. The ferrite number (_N-~) of the weldments made by different electrodes varies between 0.5 and 9.5. It was found that the increase in amount of delta ferrite in the microstructure of the weld metals, causes the decrease of the impact toughness of the weldments. It seems that using ER309L and ER316L electrodes can provide a good combination between the mechanical and metallurgical properties of the joint in AISI 304L/St37 dissimilar welding.
基金Supported by National Natural Science Foundation of China(Grant No.51475139)
文摘Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device.
文摘The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.
基金financially supported by the National Natural Science Foundation of China (No. 51075101)
文摘In this study, it was reported a novel approach for joining Cf/A1 composites and TiA1 intermetallic by self- propagating high-temperature synthesis (SHS). Mixed powders of 14A1-2Ni-3CuO were used as the SHS inter- layer, and differential thermal analysis test of A1-Ni-CuO interlayer was conducted to analyze the exothermic char- acteristic. Sound joint was got by SHS joining under the conditions of 600 ℃, 30 min, and 5 MPa. The joint was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffrac- tion (XRD). TiA13 and NiA13 are, respectively, formed in the TiA1/interlayer and Cf/A1/interlayer interfaces. Reac- tion products of Ni2Al3, NiAl3, A1203, and Cu were observed in the interlayer. And the formation mechanism of SHS joining was investigated.
基金Project50975268,supported by the National Natural Science Foundation of ChinaProject2008ZE25010,supported byAeronautical Science Foundation of China
文摘Electron beam surfi-sculpt is a new metal surface processing technology,which is widely used in the areas of materials surface treatment,composite materials manufacturing,and so on.In this paper,comeld technology,which was an application technology of electron beam surfi-sculpt during composite materials area,was introduced.And tensile experiments results and failure forms of Ti6Al4V/Carbon fibre single step joints were compared with different joining methods,such as slick embedding,adhesive bonding,riveting and comeld.It was found that comeld joint had more advantage of tensile property than other joining methods.At the same time,tensile process of comeld joint was analyzed with numerical simulation,and key factors of protrusions influenced tensile property were obtained,which was of importance to structure design and joint property improvement.
基金financially supported by the National Natural Science Foundation of China(Grant No.51075101)
文摘The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.
基金Supported by the National Natural Science Foundation of China (10201022,10971144,and 11101020)the Natural Science Foundation of Beijing (1102015)the Fundamental Research Funds for the Central Universities(2011B019)
文摘A labeling of a graph G is a bijection from E(G) to the set {1,2,…,|E (G)| }.A labeling is antimagic if for any distinct vertices x and y,the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y.We say that a graph is antimagic if it has an antimagic labeling.Hartsfield and Ringel conjectured in 1990 that every graph other than 2 K is antimagic.In this paper,we show that the antimagic conjecture is false for the case of disconnected graphs.Furthermore,we find some classes of disconnected graphs that are antimagic and some classes of graphs whose complement are disconnected are antimagic.
基金The research was supported by the Natural Science Foundation of Hubei Province(95J57)
文摘Microwave joining is a rapid developmental new technique in recent years. This paper introduces a new microwave joining equipment which was made by our lab, succeeds in alumina ceramic - hydroxylapatite bioceramic join in the equipment, and analyzes the join situation of join boundary by using scanning electron microscope (SEM), this paper analyzes the mechanism of microwave joining also. (Author abstract) 4 Refs.