In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model f...In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model function, the collinear scaling formula, quadratic approximation and interpolation. All the parameters in this model are determined by objective function interpolation condition. A new derivative free method is developed based upon this model and the global convergence of this new method is proved without any information on gradient.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic con...The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm.展开更多
We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where th...We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.展开更多
In this paper we present a trust region method of conic model for linearly constrained optimization problems. We discuss trust region approaches with conic model subproblems. Some equivalent variation properties and o...In this paper we present a trust region method of conic model for linearly constrained optimization problems. We discuss trust region approaches with conic model subproblems. Some equivalent variation properties and optimality conditions are given. A trust region algorithm based on conic model is constructed. Global convergence of the method is established.展开更多
基金This work was supported by the National Natural Science Foundation of China(10071037)
文摘In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model function, the collinear scaling formula, quadratic approximation and interpolation. All the parameters in this model are determined by objective function interpolation condition. A new derivative free method is developed based upon this model and the global convergence of this new method is proved without any information on gradient.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
基金the National Natural Science Foundation of China (Grant No.10471062)the Natural Science Foundation of Jiangsu Province (Grant No. BK2006184)
文摘The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11171159),the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No. 20103207110002), the Fund for Innovative Program of Jiangsu Province (Grant No. CXLX12_0387), CNPq-Brazil (Grant No. 301748/ 2011-0), and the Research Fund of Pontifical Catholic University of Parana, Brazil.
文摘We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.
基金This work was supported by the National Natural Science Foundation of China grant 19971042 and grant 10231060 and CNPq of Brazil
文摘In this paper we present a trust region method of conic model for linearly constrained optimization problems. We discuss trust region approaches with conic model subproblems. Some equivalent variation properties and optimality conditions are given. A trust region algorithm based on conic model is constructed. Global convergence of the method is established.