The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific...The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability.展开更多
Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide g...Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.展开更多
Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2)...Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.展开更多
Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined sp...Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.展开更多
Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric prope...Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric properties.However,synthesizing non-precious ordered intermetallics that exhibit high stability under operating conditions remains a formidable challenge,primarily owing to their strong oxyphilicity,highly negative reduction potentials,and low corrosion resistance.In this work,we report a facile yet versatile seed-mediated solid-phase approach for fabricating uniform Ni_(3)Ga_(1) intermetallic nanocubes(NCs)fully encapsulated within N-doped carbon layers(denoted as Ni_(3)Ga_(1)@NC-800).Extensive characterization confirms the formation of a unique core-shell architecture,with atomic-resolution structural analysis and X-ray absorption fine structure measurements unequivocally verifying the atomically ordered Ni_(3)Ga_(1) intermetallic phase.The Ni_(3)Ga_(1)@NC-800 catalyst demonstrates exceptional performance in the 1,4-hydrogenation of α,β-unsaturated carbonyl compounds,exhibiting both remarkable activity and exclusive selectivity while maintaining high stability over multiple reaction cycles without observable performance decay.Combined experimental and theoretical calculations reveal that the strong interatomic p-d orbital hybridization facilitates electron transfer from Ga to Ni atoms,resulting in electron localization on ordered Ni atoms.This electronic configuration positively influences H_(2)activation and optimizes substrate adsorption strength,thereby substantially improving catalytic efficiency.Furthermore,this synthetic strategy proves generalizable,successfully extending to the synthesis of other non-precious ordered Ni_(1)Sn_(1) and Ni_(2)In_(3) intermetallics confined within N-doped carbon matrices.展开更多
Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimiz...Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enh...The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.展开更多
In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary p...In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary pressure or adsorption on well performance,and only a very limited number of studies have researched the complex and coupled impact of confinement on capillarity,adsorption,and interactions between fluid molecules and pore walls.Therefore,in this study,an effective method is developed for evaluating the coupled effects of nanopore confinement on CO_(2) injection performance.First,a comprehensive thermodynamic model that incorporates adsorption,capillary pressure,and molecule-wall interaction in nanopores by modifying the Peng-Robinson equation of state(PR-EOS)is proposed.Subsequently,the calculated critical properties of different components are validated against experimental measured data,illustrating that the developed model can accurately predict the properties of the components of CO_(2)-hydrocarbon systems.Numerical simulations of field-scale case studies were then performed and calibrated using a modified phase equilibrium model.Typical fluid properties were inputted to investigate the effect of nanopore confinement on the CO_(2) injection performance.The results of this study show that the ultimate recovery factor increases by approximately 4.61%at a pore size of 10 nm,indicating that nanopore confinement is advantageous to well performance.Light hydrocarbons undergo more intense mass transfer than heavy hydrocarbons.Furthermore,as the pore radius decreased from 100 nm to 10 nm,the CO_(2) storage coefficient increased by 2.8%.The findings of this study deepen the collective understanding of the effect of nanopore confinement on CO_(2) displacement and storage,which has significant field-scale applications.展开更多
Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MD...Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MDCS).Specifically,the MMC nanoparticles confined to the surface of the ZnIn_(2)S_(4)hollow tube-shell(MMC/HT-ZIS)achieve a hydrogen evolution rate of 9.72 mmol g^(-1)h^(-1),which is 11.2 times higher than that of pure HT-ZIS.Meanwhile,the MnCdS(MCS)nanoparticles are encapsulated within the two-dimensional MMC(2D MMC/MCS)through precise regulation of size and morphology.The 10-MMC/MCS lamellar network demonstrates the highest hydrogen evolution rate of 8.19 mmol g^(-1)-h^(-1).The obtained MMC/TMs-MDCS catalysts exhibit an enhanced photocatalytic hydrogen evolution rate,which can be attributed to the strong synergistic interaction between the multidimensional confinement and the photothermal effects.The confinement space and the strong interfacial relationship within the MMC/TMs-MDCS create abundant channels and active sites that facilitate electron migration and transport.Furthermore,the construction of a confined environment positions these materials as promising candidates for achieving exceptional photothermal catalytic performance,as MMC/TMs-MDCS enhance light absorption through light scattering and reflecting effects.Additionally,the capacity of MMC/TMsMDCS to convert solar light into thermal energy significantly reduces the activation energy of the reaction,thereby facilitating reaction kinetics and accelerating the separation and transport of photogenerated carriers.This work provides valuable insights for the development of highly efficient photothermal catalytic water-splitting systems for hydrogen production using multidimensional confined catalysts.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using K...We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using Ka time-resolved imaging,it is found that in the case of massive targets,the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation.Conversely,a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets.Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma.展开更多
Groundwater quality is pivotal for sustainable resource management,necessitating comprehen-sive investigation to safeguard this critical resource.This study introduces a novel methodology that inte-grates stiff diagra...Groundwater quality is pivotal for sustainable resource management,necessitating comprehen-sive investigation to safeguard this critical resource.This study introduces a novel methodology that inte-grates stiff diagrams,geostatistical analysis,and geometric computation to delineate the extent of a confined aquifer within the Chahrdoly aquifer,located west of Hamadan,Iran.For the first time,this approach combines these tools to map the boundaries of a confined aquifer based on hydrochemical characteristics.Stiff diagrams were used to calculate geometric parameters from groundwater chemistry data,followed by simulation using a linear model incorporating the semivariogram parameterγ(h).The Root Mean Square Error(RMSE)of the linear model was used to differentiate confined from unconfined aquifers based on hydrochemical signatures.Validation was conducted by generating a cross-sectional hydrogeological layer from well logs,confirming the presence of aquitard layers.The results successufully delineated the confined aquifer's extent,showing strong agreement with hydrogeological log data.By integrating stiff diagrams with semivariogram analysis,this study enhances the understanding of hydrochemical processes,offering a robust framework for groundwater resource identification and management.展开更多
Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,ins...Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.展开更多
The conformational and dynamical properties of a long semi-flexible active polymer chain confined in a circular cavity are studied by using Langevin dynamics simulation method.Results show that the steady radius of gy...The conformational and dynamical properties of a long semi-flexible active polymer chain confined in a circular cavity are studied by using Langevin dynamics simulation method.Results show that the steady radius of gyration of the polymer decreases monotonically with increasing the active force.Interestingly,the polymer forms stable compact spiral with directional rotation at the steady state when the active force is large.Both the radius of gyration and the angular velocity of the spiral are nearly independent of the cavity size,but show scaling relations with the active force and the polymer length.It is further found that the formation of the stable compact spiral in most cases is a two-step relaxation process,where the polymer first forms a metastable swelling quasi spiral and then transforms into the stable compacted spiral near the wall of the cavity.The relaxation time is mainly determined by the transformation of the swelling quasi spiral,and shows remarkable dependence on the size of the cavity.Specially,when the circumference of the circular is nearly equivalent to the polymer length,it is difficult for the polymer to form the compacted spiral,leading to a large relaxation time.The underlying mechanism of the formation of the compacted spiral is revealed.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinar...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Scienc e Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.展开更多
Earth-abundant,layered birnessite is promising cathode for electrochemical capacitors due to the presence of confined nanofluids in interlayers for rapid ion storage.Previous work has demonstrated the capacitive co-in...Earth-abundant,layered birnessite is promising cathode for electrochemical capacitors due to the presence of confined nanofluids in interlayers for rapid ion storage.Previous work has demonstrated the capacitive co-intercalation of water and K+ions into birnessite in aqueous electrolytes,but in-depth quantitative investigations of the interactions between confined water and an external organic electrolyte are still lacking.In this work,we reveal the intercalation pseudocapacitance of hydrated birnessite(Na_(0.4)MnO_(2)·0.53H_(2)O)in sodium-based organic electrolytes via operando electrochemical quartz crystal microbalance(EQCM),and ex situ X-ray diffraction and Raman spectroscopy.The Na+ions are completely desolvated at the Na_(0.4)MnO_(2)·0.53H_(2)O-organic electrolyte interfaces and intercalate into the interlayers,while the confined water does not co-extract.The net Na+intercalation is a pseudocapacitive behavior without phase changes,displaying a high capacitive contribution of 85.6%at 1.0 m V/s.Additionally,EQCM results indicate the contributions of cation-dominated electric double layer(EDL)adsorption to the total charge storage.By replacing different solvents and anions in sodium-based organic electrolytes,we verify that Na+pseudocapacitive intercalation dominates the charge storage properties.展开更多
The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there r...The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design.展开更多
Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power densi...Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity.Herein,polyelectrolyte hydrogels(channel width,2.2 nm)with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale(radius,0.1 mm).The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers.With real seawater and river water,the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m^(-2)(per unit total membrane area),much better than state-of-the-art membranes.This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes,owning broad application prospects in the fields of osmotic energy collection,electrodialysis,flow battery and so on.展开更多
To elucidate the influence of confining pressure on microcrack evolution and macroscopic failure mechanisms in granite,a multi-perspective approach was adopted.This approach combined triaxial compression tests,acousti...To elucidate the influence of confining pressure on microcrack evolution and macroscopic failure mechanisms in granite,a multi-perspective approach was adopted.This approach combined triaxial compression tests,acoustic emission(AE)monitoring,and PFC simulations.The results show that:1)Confining pressure exhibits a pronounced linear correlation with both yield strength and compressive strength.The enhancement of confining pressure significantly improves the deformability of granite and promotes a progressive shift in failure mechanism from brittle rupture to ductile deformation;2)Increasing confining pressure elevates the stress threshold for microcrack initiation and suppresses crack propagation.As a result,the proportion of shear cracks increases(based on AE analysis)from 18.71%to 61.2%,marking a transition in the dominant failure mode from tensile to shear;3)Confining pressure facilitates the development of grain boundary shear cracks(GBSCs),establishing the primary damage pathways.In addition,local stress concentrations under high confinement conditions trigger intragranular cracking.This highlights the regulatory effect of confining pressure on microcrack evolution.展开更多
基金the National Natural Science Foundation of China(Nos.52122312,22209024,and 52473294)Tongcheng R&D Foundation(No.CPCIF-RA-0102)the State Key Laboratory of Advanced Fiber Materials,Donghua University.
文摘The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ08 and 2023HWYQ-028)+4 种基金the Taishan Scholar Project Foundation of Shandong Province(Nos.tsqn202211028 and tsqn202306080)the City University of Hong Kong(Nos.9020005,9610663,and 7020103)ITF-RTH-Global STEM Professorship(No.9446008)Hong Kong Branch of National Precious Metals Material Engineering Research Center—ITC FundGeneral Research Fund(No.9043720)from the Research Grants Council of Hong Kong SAR,China.
文摘Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.
基金supported by the National Natural Science Foundation of China(22168008,22378085)the Guangxi Natural Science Foundation(2024GXNSFDA010053)+1 种基金the Technology Development Project of Guangxi Bossco Environmental Protection Technology Co.,Ltd(202100039)Innovation Project of Guangxi Graduate Education(YCBZ2024065).
文摘Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.
基金supported by the National Key Research and Development Program of China(No.2024YFB3212901)National Natural Science Foundation of China(12072189)the Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University(No.YG2025ZD05)。
文摘Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.
基金financially supported by the program of the National Natural Science Foundation of Shandong Province(No.ZR2023ZD23)the Shandong Province Key Research and Development Plan(No.2023CXGC010607).
文摘Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric properties.However,synthesizing non-precious ordered intermetallics that exhibit high stability under operating conditions remains a formidable challenge,primarily owing to their strong oxyphilicity,highly negative reduction potentials,and low corrosion resistance.In this work,we report a facile yet versatile seed-mediated solid-phase approach for fabricating uniform Ni_(3)Ga_(1) intermetallic nanocubes(NCs)fully encapsulated within N-doped carbon layers(denoted as Ni_(3)Ga_(1)@NC-800).Extensive characterization confirms the formation of a unique core-shell architecture,with atomic-resolution structural analysis and X-ray absorption fine structure measurements unequivocally verifying the atomically ordered Ni_(3)Ga_(1) intermetallic phase.The Ni_(3)Ga_(1)@NC-800 catalyst demonstrates exceptional performance in the 1,4-hydrogenation of α,β-unsaturated carbonyl compounds,exhibiting both remarkable activity and exclusive selectivity while maintaining high stability over multiple reaction cycles without observable performance decay.Combined experimental and theoretical calculations reveal that the strong interatomic p-d orbital hybridization facilitates electron transfer from Ga to Ni atoms,resulting in electron localization on ordered Ni atoms.This electronic configuration positively influences H_(2)activation and optimizes substrate adsorption strength,thereby substantially improving catalytic efficiency.Furthermore,this synthetic strategy proves generalizable,successfully extending to the synthesis of other non-precious ordered Ni_(1)Sn_(1) and Ni_(2)In_(3) intermetallics confined within N-doped carbon matrices.
文摘Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金financially supported by the National Natural Science Foundation of China(No.52231007)the Natural Science Foundation of Shaanxi Province(No.2022JM-248)+1 种基金the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratorythe Doctoral Scientific Research Foundation of Shaanxi University of Science&Technology(No.BJ16-06).
文摘The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.
基金supported by National Natural Science Foundation of China(Nos.52474052 and 52074248)Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology,China(No.BYESS2023414)Scientific Research Innovation Capability Support Project for Young Faculty,China(No.ZYGXQNJSKYCXNLZCXM-E14).
文摘In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary pressure or adsorption on well performance,and only a very limited number of studies have researched the complex and coupled impact of confinement on capillarity,adsorption,and interactions between fluid molecules and pore walls.Therefore,in this study,an effective method is developed for evaluating the coupled effects of nanopore confinement on CO_(2) injection performance.First,a comprehensive thermodynamic model that incorporates adsorption,capillary pressure,and molecule-wall interaction in nanopores by modifying the Peng-Robinson equation of state(PR-EOS)is proposed.Subsequently,the calculated critical properties of different components are validated against experimental measured data,illustrating that the developed model can accurately predict the properties of the components of CO_(2)-hydrocarbon systems.Numerical simulations of field-scale case studies were then performed and calibrated using a modified phase equilibrium model.Typical fluid properties were inputted to investigate the effect of nanopore confinement on the CO_(2) injection performance.The results of this study show that the ultimate recovery factor increases by approximately 4.61%at a pore size of 10 nm,indicating that nanopore confinement is advantageous to well performance.Light hydrocarbons undergo more intense mass transfer than heavy hydrocarbons.Furthermore,as the pore radius decreased from 100 nm to 10 nm,the CO_(2) storage coefficient increased by 2.8%.The findings of this study deepen the collective understanding of the effect of nanopore confinement on CO_(2) displacement and storage,which has significant field-scale applications.
基金supported by the Postgraduate Education Reform Project of Shandong Province(SDYAL2023032)the National Key Research and Development Program(2021YFB3500102)。
文摘Multidimensional confined structure systems are proposed and demonstrated by using MoO_(2)@MO_(2)C(MMC)to enhance the photothermal catalytic performance of the metal sulfides-multidimensional confined structure(TMs-MDCS).Specifically,the MMC nanoparticles confined to the surface of the ZnIn_(2)S_(4)hollow tube-shell(MMC/HT-ZIS)achieve a hydrogen evolution rate of 9.72 mmol g^(-1)h^(-1),which is 11.2 times higher than that of pure HT-ZIS.Meanwhile,the MnCdS(MCS)nanoparticles are encapsulated within the two-dimensional MMC(2D MMC/MCS)through precise regulation of size and morphology.The 10-MMC/MCS lamellar network demonstrates the highest hydrogen evolution rate of 8.19 mmol g^(-1)-h^(-1).The obtained MMC/TMs-MDCS catalysts exhibit an enhanced photocatalytic hydrogen evolution rate,which can be attributed to the strong synergistic interaction between the multidimensional confinement and the photothermal effects.The confinement space and the strong interfacial relationship within the MMC/TMs-MDCS create abundant channels and active sites that facilitate electron migration and transport.Furthermore,the construction of a confined environment positions these materials as promising candidates for achieving exceptional photothermal catalytic performance,as MMC/TMs-MDCS enhance light absorption through light scattering and reflecting effects.Additionally,the capacity of MMC/TMsMDCS to convert solar light into thermal energy significantly reduces the activation energy of the reaction,thereby facilitating reaction kinetics and accelerating the separation and transport of photogenerated carriers.This work provides valuable insights for the development of highly efficient photothermal catalytic water-splitting systems for hydrogen production using multidimensional confined catalysts.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金funding via EUROfusion Enabling research Project No.AWP21-ENR-01-CEA-02“Advancing Shock Ignition for Direct-Drive Inertial Fusion,”the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No.101052200-EUROfusion)+2 种基金the Czech Ministry of Education,Youth and Sports (CMEYS) for funding the operation of the PALS facility (Grant No.LM2023068)the EuroHPC Joint Undertaking for awarding access to Karolina at IT4Innovations (VSB-TU),Czechia under Project No.EHPC-REG-2023R02-006(DD-23-157)the Ministry of Education,Youth and Sports of the Czech Republic through e-INFRA CZ (Grant No.ID:90140)
文摘We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using Ka time-resolved imaging,it is found that in the case of massive targets,the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation.Conversely,a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets.Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma.
文摘Groundwater quality is pivotal for sustainable resource management,necessitating comprehen-sive investigation to safeguard this critical resource.This study introduces a novel methodology that inte-grates stiff diagrams,geostatistical analysis,and geometric computation to delineate the extent of a confined aquifer within the Chahrdoly aquifer,located west of Hamadan,Iran.For the first time,this approach combines these tools to map the boundaries of a confined aquifer based on hydrochemical characteristics.Stiff diagrams were used to calculate geometric parameters from groundwater chemistry data,followed by simulation using a linear model incorporating the semivariogram parameterγ(h).The Root Mean Square Error(RMSE)of the linear model was used to differentiate confined from unconfined aquifers based on hydrochemical signatures.Validation was conducted by generating a cross-sectional hydrogeological layer from well logs,confirming the presence of aquitard layers.The results successufully delineated the confined aquifer's extent,showing strong agreement with hydrogeological log data.By integrating stiff diagrams with semivariogram analysis,this study enhances the understanding of hydrochemical processes,offering a robust framework for groundwater resource identification and management.
基金funded by the National Key R&D Program of China(Grant No.2023YFA1608400)the National Natural Science Foundation of China(Grant No.12302281).
文摘Hydrodynamic instability growth at the deuterium-tritium(DT)fuel-ablator interface plays a critical role in determining the performance of inertial confinement fusion implosions.During the late stages of implosion,insufficient doping of the ablator material can result in highenergy X-ray preheat,which may trigger the development of a classical-like Rayleigh-Taylor instability(RTI)at the fuel-ablator interface.In implosion experiments at the Shenguang 100 kJ-level laser facility,the primary source of perturbation is the roughness of the inner DT ice interface.In this study,we propose an analytical model to describe the feed-out process of the initial roughness of the inner DT ice interface.The perturbation amplitude derived from this model serves as the initial seed for the late-time RTI during the acceleration phase.Our findings confirm the presence of classical-like RTI at the fuel-ablator interface.Numerical simulations conducted using a radiation hydrodynamic code validate the proposed analytical model and demonstrate the existence of a peak mode number in both the feed-out process and the classical-like RTI.It provides an alternative bridge between the current target fabrication limitations and the unexpected implosion performance.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY20A040004)the National Natural Science Foundation of China(Nos.22203060 and 11974305).
文摘The conformational and dynamical properties of a long semi-flexible active polymer chain confined in a circular cavity are studied by using Langevin dynamics simulation method.Results show that the steady radius of gyration of the polymer decreases monotonically with increasing the active force.Interestingly,the polymer forms stable compact spiral with directional rotation at the steady state when the active force is large.Both the radius of gyration and the angular velocity of the spiral are nearly independent of the cavity size,but show scaling relations with the active force and the polymer length.It is further found that the formation of the stable compact spiral in most cases is a two-step relaxation process,where the polymer first forms a metastable swelling quasi spiral and then transforms into the stable compacted spiral near the wall of the cavity.The relaxation time is mainly determined by the transformation of the swelling quasi spiral,and shows remarkable dependence on the size of the cavity.Specially,when the circumference of the circular is nearly equivalent to the polymer length,it is difficult for the polymer to form the compacted spiral,leading to a large relaxation time.The underlying mechanism of the formation of the compacted spiral is revealed.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Scienc e Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.
基金supported by the National Natural Science Foundation of China(No.22179113)the Guangdong High-Level Innovation Institute Project(No.2021B0909050001)the Fundamental Research Funds for the Central Universities(No.20720230028)。
文摘Earth-abundant,layered birnessite is promising cathode for electrochemical capacitors due to the presence of confined nanofluids in interlayers for rapid ion storage.Previous work has demonstrated the capacitive co-intercalation of water and K+ions into birnessite in aqueous electrolytes,but in-depth quantitative investigations of the interactions between confined water and an external organic electrolyte are still lacking.In this work,we reveal the intercalation pseudocapacitance of hydrated birnessite(Na_(0.4)MnO_(2)·0.53H_(2)O)in sodium-based organic electrolytes via operando electrochemical quartz crystal microbalance(EQCM),and ex situ X-ray diffraction and Raman spectroscopy.The Na+ions are completely desolvated at the Na_(0.4)MnO_(2)·0.53H_(2)O-organic electrolyte interfaces and intercalate into the interlayers,while the confined water does not co-extract.The net Na+intercalation is a pseudocapacitive behavior without phase changes,displaying a high capacitive contribution of 85.6%at 1.0 m V/s.Additionally,EQCM results indicate the contributions of cation-dominated electric double layer(EDL)adsorption to the total charge storage.By replacing different solvents and anions in sodium-based organic electrolytes,we verify that Na+pseudocapacitive intercalation dominates the charge storage properties.
基金supported by the Natural Science Foundation of Xiamen,China(3502Z202472001)the National Natural Science Foundation of China(22402163,22021001,21925404,T2293692,and 22361132532).
文摘The structure of water and proton transfer under nanoscale confinement has garnered significant attention due to its crucial role in elucidating various phenomena across multiple scientific disciplines.However,there remains a lack of consensus on fundamental properties such as diffusion behavior and the nature of hydrogen bonding in confined environments.In this work,we investigated the influence of confinement on proton transfer in water confined within graphene sheets at various spacings by ab initio molecule dynamic and multiscale analysis with time evolution of structural properties,graph theory and persistent homology.We found that reducing the graphene interlayer distance while maintaining water density close to that of bulk water leads to a decrease in proton transfer frequency.In contrast,reducing the interlayer distance without maintaining bulk-like water density results in an increase in proton transfer frequency.This difference is mainly due to the confinement conditions:when density is unchanged,the hydrogen bond network remains similar with significant layering,while compressive stress that increases density leads to a more planar hydrogen bond network,promoting faster proton transfer.Our findings elucidate the complex relationship between confinement and proton transfer dynamics,with implications for understanding proton transport in confined environments,relevant to energy storage and material design.
基金supported by The Project of“20 Items of University”of Jinan(Grant No.202228078)Innovative Research Team in Higher Educational Institutions of Shandong Province(Grant No.2023KJ107)+2 种基金Taishan Scholars Program of Shandong Province(tsqn201812085)National Natural Science Foundation of China(Grant No.51903102,Grant No.52376063,Grant No.52302256)China Postdoctoral Science Foundation(Grant No.2023MD744223).
文摘Harvesting the immense and renewable osmotic energy with reverse electrodialysis(RED)technology shows great promise in dealing with the ever-growing energy crisis.One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity.Herein,polyelectrolyte hydrogels(channel width,2.2 nm)with inherent high ion conductivity have been demonstrated to enable excellent selective ion transfer when confined in cylindrical anodized aluminum pore with lateral size even up to the submillimeter scale(radius,0.1 mm).The membrane permeability of the anti-swelling hydrogel can also be further increased with cellulose nanofibers.With real seawater and river water,the output power density of a three-chamber cell on behalf of repeat unit of RED system can reach up to 8.99 W m^(-2)(per unit total membrane area),much better than state-of-the-art membranes.This work provides a new strategy for the preparation of polyelectrolyte hydrogel-based ion-selective membranes,owning broad application prospects in the fields of osmotic energy collection,electrodialysis,flow battery and so on.
基金Projects(U23A2060,42177143)supported by the National Natural Science Foundation of China。
文摘To elucidate the influence of confining pressure on microcrack evolution and macroscopic failure mechanisms in granite,a multi-perspective approach was adopted.This approach combined triaxial compression tests,acoustic emission(AE)monitoring,and PFC simulations.The results show that:1)Confining pressure exhibits a pronounced linear correlation with both yield strength and compressive strength.The enhancement of confining pressure significantly improves the deformability of granite and promotes a progressive shift in failure mechanism from brittle rupture to ductile deformation;2)Increasing confining pressure elevates the stress threshold for microcrack initiation and suppresses crack propagation.As a result,the proportion of shear cracks increases(based on AE analysis)from 18.71%to 61.2%,marking a transition in the dominant failure mode from tensile to shear;3)Confining pressure facilitates the development of grain boundary shear cracks(GBSCs),establishing the primary damage pathways.In addition,local stress concentrations under high confinement conditions trigger intragranular cracking.This highlights the regulatory effect of confining pressure on microcrack evolution.