Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different...Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.展开更多
This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in...This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.展开更多
An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we s...An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the 1s2s ^1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eekart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.展开更多
The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extens...The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extensively investigated,as such interactions can induce abnormal aerodynamic heating problems in hypersonic flows of vehicles.The transition process between these two distinct types of shock/shock interactions remains unclear.In the present study,a subclass of shock/shock interaction configuration is revealed and defined as Type Ⅲa.Type Ⅲa interaction can induce much more severe aerodynamic heating than a Type Ⅳ interaction which was ever reported to be the most serious in literature.The intense aerodynamic heating observed in this configuration highlights a new design point for the thermal protection system of hypersonic vehicles.A secondary Mach interaction between shock waves in the supersonic flow path of a Type Ⅲ configuration is demonstrated to be the primary mechanism for such a subclass of shock/shock interaction configuration.展开更多
The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the ...The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.展开更多
With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabil...With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabilities, and absorption oscillator strengths of Kα x-ray from Mn XVII to Mn XXIV have been calculated by using relativistic configuration interaction (RCI) and multi-configuration Dirac Fock (MCDF) method in the active interaction approach. Compared with the only available experimental transition data on He-like and Li-like manganese, the present results are in good agreement with them, and the rest of transition data of the present results are new ones. These wide range data can provide useful parameters for the study of the manganese plasma.展开更多
SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the stru...SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO^+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B^2Σ^+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B^2Σ^+and A^2Π is estimated. The laser cooling scheme of SiO^+ is proposed by employing B^2Σ^+–X^2Σ^+ transition. Finally, the vertical ionization energy values from SiO(X^1Σ^+) to ionic states: SiO^+ , X^2Σ^+, B^2Σ^+, and A^2Π are calculated, which agree well with experimental measurements.展开更多
Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The ...Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H2O, CH2(singlet and triplet states) and N2 have also been calculated with IMRCI as well as the M?ller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)).These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10-5 hartree within just 2-4 iterations. Further,IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.展开更多
The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell elec...The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.展开更多
The geometries of mixed neutral and cationic BLik(k=1-7)clusters have ben determined with energy gradient method.The correlation energy is considered with the single-double configuration interaction(CISD).The boron at...The geometries of mixed neutral and cationic BLik(k=1-7)clusters have ben determined with energy gradient method.The correlation energy is considered with the single-double configuration interaction(CISD).The boron atom B takes the central position in the most stable geometries of all clusters studied except in the neutral BLi3 cluster.The binding energies per atom and the second differences in energies are discussed.展开更多
We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods includi...We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction spac...The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction space. Although all Bω bases generate the same CI space, the corresponding configurations of each Bω base have distinct quantum-mechanical information contents. In previous works, we have introduced a multi-reference configuration interaction method, based on the multiple extremes of the Hartree-Fock problem. This method was applied to calculate the permanent electrical dipole and quadrupole moments of some small molecules using minimal and double, triple and polarized double-zeta bases. In all cases were possible, using a reduced number of configurations, to obtain dipole and quadrupole moments in close agreement with the experimental values and energies without compromising the energy of the state function. These results show the positive effect of the use of the multi-reference Hartree-Fock bases that allowed a better extraction of quantum mechanical information from the several Bω bases. But to extend these ideas for larger systems and atomic bases, it is necessary to develop criteria to build the multireference Hartree-Fock bases. In this project, we are beginning a study of the non-uniform distribution of quantum-mechanical information content of the Bω bases, searching identify the factors that allowed obtain the good results cited展开更多
To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice syste...To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice system with various interaction strengths are calculated. It is found that the calculated results are in good agreement with those obtained by exact diagonalization (i.e., the exact values for a given basis set) when the population of psi particles (psips) is higher than the critical population required to correctly sample the ground state wave function. In addition, the variations of the average computational time per 20 Monte Carlo cycles with the coupling strength and the number of processors are also analyzed. The calculated results show that the computational efficiency of an FCIQMC calculation is mainly affected by the total population of psips and the communication between processors. These results can provide useful references for understanding the FCIQMC algorithm, studying the ground state properties of the 2D Hubbard model for the larger system size by the FCIQMC method and using a computational budget as effectively as possible.展开更多
To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. ...To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.展开更多
The title compound (C14H12N2O2, Mr = 240.26) crystallizes in the monoclinic system, space group P21/a with a = 7.394(1), b = 21.334(3), c = 7.423(1) ? b = 89.82(1)? V = 1170.8(3) ?, Z = 4, Dc = 1.363 g/cm3, m(MoKa) = ...The title compound (C14H12N2O2, Mr = 240.26) crystallizes in the monoclinic system, space group P21/a with a = 7.394(1), b = 21.334(3), c = 7.423(1) ? b = 89.82(1)? V = 1170.8(3) ?, Z = 4, Dc = 1.363 g/cm3, m(MoKa) = 0.93 cm-1 and F(000) = 504.00. The final R and wR are 0.0440 and 0.1370 for 2153 observed reflections (I > 2s(I)), respectively. The dihedral angle between the two phenyl rings is 52.9 and that between the NO2 group and its attached ring is 3.0. In the crystal, molecules are stacked along [100] through p…p interactions. The CH…O hydrogen bond (3.403 ? 120.4? laterally connects the stacks along [010] to form networks (001) which are further anti- parallelly connected by CH…O (3.382 ? 142.9) and p…p interactions extending along [001]. Also presented here is a brief study on the CH…O hydrogen bonds in nitro-substituted benzyl-ideneanilines which can be classified into five types, namely, )5(12R, )4(21R, )8(22R, )6(12R and )7(22R, with the first three occurring more often.展开更多
The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1...The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1,3,5-triazine in situ.1 was fully characterized by single-crystal X-ray diffraction,elemental analysis and FT-IR.This complex exhibits a three-dimensional frame-work constructed through hydrogen bonding and C-H···π stacking interactions.The cyclic voltametric behavior of complex 1 was also investigated.1 belongs to the monoclinic system,space group P21/c with a = 15.112(5),b = 7.115(2),c = 19.899(6) ,β = 112.32°,V = 1979.4(11) 3,Mr = 460.94,Dc = 1.540 g/cm3,F(000) = 948,μ = 1.146 mm-1,Z = 4,the final R = 0.0612 and wR = 0.1813 for 2510 observed reflections with I 2σ(I).展开更多
Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazoliu...Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazolium-based olefin scaffolds,wherein intramolecular through-space n→π^(*)orbital interaction plays a stabilizing role in the Z isomer approaching quantitative conversion.The manipulation of diverse noncovalent interactions,including intermolecular chalcogen bonding,further provided versatile handles for regulating molecular recognition and multiaddressable switching.Despite bidirectional E/Z photoisomerization with neutral tellurazole derivatives,protonation-induced cationic tellurazoliums allowed significant enhancement in the efficiency of Z→E switching(E up to 73%)while maintaining high percentage E→Z switching(Z up to 95%),as chalcogen bonding with counteranions contributes to the stabilization of electron-accepting tellurazoliums affording a larger wavelength difference between E/Z isomers.Furthermore,the n→π^(*)orbital interaction enables the preference of Z isomer in the ground state for N-methyl tellurazoliums.Bidirectional E/Z photoswitching with high conversion(Z up to 99%,E up to 81%)was attained,and E→Z isomerization can also be invoked by nucleophilic catalysis,making N-methyl tellurazoliums as T-type photoswitches.The results showcase the power of noncovalent interactions for controlling molecular photoswitches and should set the scene for vip recognition,dynamic assemblies,and responsive materials.展开更多
The configuration interaction relativistic Hartree-Fock(CI-RHF) model is developed in this work. Compared to the conventional configuration interaction shell model(CISM), the CI-RHF model can be applied to study the s...The configuration interaction relativistic Hartree-Fock(CI-RHF) model is developed in this work. Compared to the conventional configuration interaction shell model(CISM), the CI-RHF model can be applied to study the structural properties of a wide range of nuclei without readjusting any parameters, as the effective Hamiltonian for different model spaces can be deduced consistently from a universal density-dependent Lagrangian based on the Hartree-Fock single-particle basis. The convergence of intermediate-state excitations has been examined in evaluating the effective interactions, and the core-polarization effects are illustrated, taking^(18)O as an example. Employing the CI-RHF model, both the bulk properties and low-lying spectra of even-even nuclei^(18-28)Ne have been well-reproduced with the model space restricted to the sd shell. Studies of the isotopic evolution concerning charge radii and low-lying spectra highlight the shell closure at N = 14 for neon isotopes. Furthermore, the cross-shell calculations extending from the sd to p f shell successfully reproduced the low-lying spectra of^(30)Ne and^(32)Ne. Notably,remarkably low excitation energies E(2_(1)^(+)) of ^(30)Ne suggest the disappearance of the conventional magicity N = 20.展开更多
The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this...The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this methodology is its application to nuclear structure calculations.We developed an FCIQMC approach to study nuclear systems.To validate this method,we applied FCIQMC to a small model space,where the standard shell model remains computationally feasible.Specifically,we performed calculations for?ωisotopes using pf-shell GXPF1A interaction and compared the results with those obtained from the standard shell model calculations.To further demonstrate the capabilities of the FCIQMC,we investigated its performance in systems exhibiting strong correlations,where conventional nuclear structure models are less effective.Using an artificially constructed strongly correlated system with a modified GXPF1A interaction,our calculations revealed that FCIQMC delivered superior results compared to many existing methods.Finally,we applied FCIQMC to Fe isotopes in the sdpf-shell model space,showing its potential to perform accurate calculations in large model spaces that are inaccessible to the shell model because of the limitations of current computational resources.展开更多
基金supported by the National Natural Science Foundation of China(No.11972190).
文摘Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.
基金2023 Campus Scientific Research Fund of Chongqing Institute of Engineering(Project number:2023xsky03)2023 Education and Teaching Reform Research Project of Chongqing Institute of Engineering(Project number:JY2023214)2023 First-class Curriculum Construction Project of Chongqing Institute of Engineering(Project number:KC20230103)。
文摘This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347126). Acknowledgements Xiong Zhuang acknowledges the Greek State Scholarship Foundation (I.K.Y.) and the National Hellenic Research Foundation Scholarship that partially supported this work.
文摘An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the 1s2s ^1S isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eekart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree-Fock and multi-configuration Hartree-Fock reported results.
基金co-supported by the National Key Research and Development Plan of China(No.2019YFA0405204)the National Natural Science Foundation of China(Nos.12172365,12072353 and 12132017)。
文摘The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extensively investigated,as such interactions can induce abnormal aerodynamic heating problems in hypersonic flows of vehicles.The transition process between these two distinct types of shock/shock interactions remains unclear.In the present study,a subclass of shock/shock interaction configuration is revealed and defined as Type Ⅲa.Type Ⅲa interaction can induce much more severe aerodynamic heating than a Type Ⅳ interaction which was ever reported to be the most serious in literature.The intense aerodynamic heating observed in this configuration highlights a new design point for the thermal protection system of hypersonic vehicles.A secondary Mach interaction between shock waves in the supersonic flow path of a Type Ⅲ configuration is demonstrated to be the primary mechanism for such a subclass of shock/shock interaction configuration.
基金Project supported by the national Natural Science Foundation of China (Grant No 10674114).
文摘The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.
文摘With contributions from Breit interaction, quantum electrodynarnics (QED) corrections and nuclear mass corrections to the initial and final levels are taken into account. The transition energies, transition probabilities, and absorption oscillator strengths of Kα x-ray from Mn XVII to Mn XXIV have been calculated by using relativistic configuration interaction (RCI) and multi-configuration Dirac Fock (MCDF) method in the active interaction approach. Compared with the only available experimental transition data on He-like and Li-like manganese, the present results are in good agreement with them, and the rest of transition data of the present results are new ones. These wide range data can provide useful parameters for the study of the manganese plasma.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the Science Challenge Project(Grant No.TZ2016005)+4 种基金the China Postdoctoral Science Foundation(Grant No.2018M631404)the National Natural Science Foundation of China(Grant No.11404180)the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province,China(Grant No.UNPYSCT-2015095)the Natural Science Research Project of Education Department of Anhui Province,China(Grant No.KJ2018A0342)the Key Program of Excellent Youth Talent Project of Fuyang Normal University,China(Grant No.rcxm201801)
文摘SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO^+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B^2Σ^+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B^2Σ^+and A^2Π is estimated. The laser cooling scheme of SiO^+ is proposed by employing B^2Σ^+–X^2Σ^+ transition. Finally, the vertical ionization energy values from SiO(X^1Σ^+) to ionic states: SiO^+ , X^2Σ^+, B^2Σ^+, and A^2Π are calculated, which agree well with experimental measurements.
基金supported by the National Natural Science Foundation of China(No.21473008 and No.21873011)
文摘Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H2O and CH2(singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H2O, CH2(singlet and triplet states) and N2 have also been calculated with IMRCI as well as the M?ller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)).These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10-5 hartree within just 2-4 iterations. Further,IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2010GB104003)the Fundamental Research Funds for the Central Universities,China (Grant No. 450060481375)
文摘The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+(q〉2) ions according to the present ab initio calculations.The calculated values for 1st-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.
文摘The geometries of mixed neutral and cationic BLik(k=1-7)clusters have ben determined with energy gradient method.The correlation energy is considered with the single-double configuration interaction(CISD).The boron atom B takes the central position in the most stable geometries of all clusters studied except in the neutral BLi3 cluster.The binding energies per atom and the second differences in energies are discussed.
基金Supported by the 2014 Postdoctoral Sustentation Fund of Qingdao under Grant No 01020120517the Natural Science Foundation of Shandong Province under Grant No ZR2014AP001+1 种基金the National Natural Science Foundation of China under Grant No11447226the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No 2015RCJJ015
文摘We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
文摘The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction space. Although all Bω bases generate the same CI space, the corresponding configurations of each Bω base have distinct quantum-mechanical information contents. In previous works, we have introduced a multi-reference configuration interaction method, based on the multiple extremes of the Hartree-Fock problem. This method was applied to calculate the permanent electrical dipole and quadrupole moments of some small molecules using minimal and double, triple and polarized double-zeta bases. In all cases were possible, using a reduced number of configurations, to obtain dipole and quadrupole moments in close agreement with the experimental values and energies without compromising the energy of the state function. These results show the positive effect of the use of the multi-reference Hartree-Fock bases that allowed a better extraction of quantum mechanical information from the several Bω bases. But to extend these ideas for larger systems and atomic bases, it is necessary to develop criteria to build the multireference Hartree-Fock bases. In this project, we are beginning a study of the non-uniform distribution of quantum-mechanical information content of the Bω bases, searching identify the factors that allowed obtain the good results cited
基金Supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province under Grant No 16KJB140008the National Natural Science Foundation of China under Grant Nos 11447204 and 11647164+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No BK20151079the Scientific Research Foundation of Nanjing Xiaozhuang University under Grant No 2015NXY34
文摘To validate the ability of full configuration interaction quantum Monte Carlo (FCIQMC) for studying the 2D Hubbard model near half-filling regime, the ground state energies of a 4×44×4 square lattice system with various interaction strengths are calculated. It is found that the calculated results are in good agreement with those obtained by exact diagonalization (i.e., the exact values for a given basis set) when the population of psi particles (psips) is higher than the critical population required to correctly sample the ground state wave function. In addition, the variations of the average computational time per 20 Monte Carlo cycles with the coupling strength and the number of processors are also analyzed. The calculated results show that the computational efficiency of an FCIQMC calculation is mainly affected by the total population of psips and the communication between processors. These results can provide useful references for understanding the FCIQMC algorithm, studying the ground state properties of the 2D Hubbard model for the larger system size by the FCIQMC method and using a computational budget as effectively as possible.
文摘To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.
文摘The title compound (C14H12N2O2, Mr = 240.26) crystallizes in the monoclinic system, space group P21/a with a = 7.394(1), b = 21.334(3), c = 7.423(1) ? b = 89.82(1)? V = 1170.8(3) ?, Z = 4, Dc = 1.363 g/cm3, m(MoKa) = 0.93 cm-1 and F(000) = 504.00. The final R and wR are 0.0440 and 0.1370 for 2153 observed reflections (I > 2s(I)), respectively. The dihedral angle between the two phenyl rings is 52.9 and that between the NO2 group and its attached ring is 3.0. In the crystal, molecules are stacked along [100] through p…p interactions. The CH…O hydrogen bond (3.403 ? 120.4? laterally connects the stacks along [010] to form networks (001) which are further anti- parallelly connected by CH…O (3.382 ? 142.9) and p…p interactions extending along [001]. Also presented here is a brief study on the CH…O hydrogen bonds in nitro-substituted benzyl-ideneanilines which can be classified into five types, namely, )5(12R, )4(21R, )8(22R, )6(12R and )7(22R, with the first three occurring more often.
基金supported by the University Science Foundation of Anhui Province (No.KJ2009B104)the Applied Chemistry Key Constructing Subject of Anhui Province (No.200802187C)
文摘The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1,3,5-triazine in situ.1 was fully characterized by single-crystal X-ray diffraction,elemental analysis and FT-IR.This complex exhibits a three-dimensional frame-work constructed through hydrogen bonding and C-H···π stacking interactions.The cyclic voltametric behavior of complex 1 was also investigated.1 belongs to the monoclinic system,space group P21/c with a = 15.112(5),b = 7.115(2),c = 19.899(6) ,β = 112.32°,V = 1979.4(11) 3,Mr = 460.94,Dc = 1.540 g/cm3,F(000) = 948,μ = 1.146 mm-1,Z = 4,the final R = 0.0612 and wR = 0.1813 for 2510 observed reflections with I 2σ(I).
基金financially supported by the National Natural Science Foundation of China(grant nos.92156010,22071247,22101283,and 22101284)the Strategic Priority Research Program(grant no.XDB20000000)+1 种基金the Key Research Program of Frontier Sciences(grant no.QYZDB-SSW-SLH030)of Chinese Academy of Sciences,Natural Science Foundation of Fujian Province(grant nos.2020J06035 and 2022J05085)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(grant no.2021ZR112)for support.
文摘Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazolium-based olefin scaffolds,wherein intramolecular through-space n→π^(*)orbital interaction plays a stabilizing role in the Z isomer approaching quantitative conversion.The manipulation of diverse noncovalent interactions,including intermolecular chalcogen bonding,further provided versatile handles for regulating molecular recognition and multiaddressable switching.Despite bidirectional E/Z photoisomerization with neutral tellurazole derivatives,protonation-induced cationic tellurazoliums allowed significant enhancement in the efficiency of Z→E switching(E up to 73%)while maintaining high percentage E→Z switching(Z up to 95%),as chalcogen bonding with counteranions contributes to the stabilization of electron-accepting tellurazoliums affording a larger wavelength difference between E/Z isomers.Furthermore,the n→π^(*)orbital interaction enables the preference of Z isomer in the ground state for N-methyl tellurazoliums.Bidirectional E/Z photoswitching with high conversion(Z up to 99%,E up to 81%)was attained,and E→Z isomerization can also be invoked by nucleophilic catalysis,making N-methyl tellurazoliums as T-type photoswitches.The results showcase the power of noncovalent interactions for controlling molecular photoswitches and should set the scene for vip recognition,dynamic assemblies,and responsive materials.
基金partly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB34000000)the Fundamental Research Funds for the Central Universities (lzujbky-2023-stlt01)+2 种基金the National Key Research and Development (R&D) Program (2021YFA1601500)the National Natural Science Foundation of China (1240050235, 12275111)the Supercomputing Center of Lanzhou University,China。
文摘The configuration interaction relativistic Hartree-Fock(CI-RHF) model is developed in this work. Compared to the conventional configuration interaction shell model(CISM), the CI-RHF model can be applied to study the structural properties of a wide range of nuclei without readjusting any parameters, as the effective Hamiltonian for different model spaces can be deduced consistently from a universal density-dependent Lagrangian based on the Hartree-Fock single-particle basis. The convergence of intermediate-state excitations has been examined in evaluating the effective interactions, and the core-polarization effects are illustrated, taking^(18)O as an example. Employing the CI-RHF model, both the bulk properties and low-lying spectra of even-even nuclei^(18-28)Ne have been well-reproduced with the model space restricted to the sd shell. Studies of the isotopic evolution concerning charge radii and low-lying spectra highlight the shell closure at N = 14 for neon isotopes. Furthermore, the cross-shell calculations extending from the sd to p f shell successfully reproduced the low-lying spectra of^(30)Ne and^(32)Ne. Notably,remarkably low excitation energies E(2_(1)^(+)) of ^(30)Ne suggest the disappearance of the conventional magicity N = 20.
基金supported by the National Key R&D Program of China(Nos.2024YFA1610900,2023YFA1606401,and 2023YFA1606403)the National Natural Science Foundation of China(Nos.12335007,12035001 and 12205340)。
文摘The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this methodology is its application to nuclear structure calculations.We developed an FCIQMC approach to study nuclear systems.To validate this method,we applied FCIQMC to a small model space,where the standard shell model remains computationally feasible.Specifically,we performed calculations for?ωisotopes using pf-shell GXPF1A interaction and compared the results with those obtained from the standard shell model calculations.To further demonstrate the capabilities of the FCIQMC,we investigated its performance in systems exhibiting strong correlations,where conventional nuclear structure models are less effective.Using an artificially constructed strongly correlated system with a modified GXPF1A interaction,our calculations revealed that FCIQMC delivered superior results compared to many existing methods.Finally,we applied FCIQMC to Fe isotopes in the sdpf-shell model space,showing its potential to perform accurate calculations in large model spaces that are inaccessible to the shell model because of the limitations of current computational resources.